

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, SCI, SPI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51111adlm-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classifications	Pin Name	I/O	Description		
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.		
Serial	Asynchronous mode/clock synchronous mode				
communications interface (SCIe)	SCK1, SCK5	I/O	Input/output pins for the clock.		
	RXD1, RXD5	Input	Input pins for received data.		
	TXD1, TXD5	Output	Output pins for transmitted data.		
	CTS1#, CTS5#	Input	Input pins for controlling the start of transmission and reception.		
	RTS1#, RTS5#	Output	Output pins for controlling the start of transmission and reception.		
Serial	Simple I ² C mode				
communications interface (SCIe)	SSCL1, SSCL5	I/O	Input/output pins for the I ² C clock.		
	SSDA1, SSDA5	I/O	Input/output pins for the I ² C data.		
	Simple SPI mode				
	SCK1, SCK5	I/O	Input/output pins for the clock.		
	SMISO1, SMISO5	I/O	Input/output pins for slave transmit data.		
	SMOSI1, SMOSI5	I/O	Input/output pins for master transmit data.		
	SS1#, SS5#	Input	Chip-select input pins.		
Serial	Asynchronous mode/cloc	k synchron	ous mode		
communications nterface (SCIf)	SCK12	I/O	Input/output pin for the clock.		
	RXD12	Input	Input pin for receiving data.		
	TXD12	Output	Output pin for transmitting data.		
	CTS12#	Input	Input pin for controlling the start of transmission and reception.		
	RTS12#	Output	Output pin for controlling the start of transmission and reception.		
	Simple I ² C mode				
	SSCL12	I/O	Input/output pin for the I ² C clock.		
	SSDA12	I/O	Input/output pin for the I ² C data.		
	Simple SPI mode				
	SCK12	I/O	Input/output pin for the clock.		
	SMISO12	I/O	Input/output pin for slave transmit data.		
	SMOSI12	I/O	Input/output pin for master transmit data.		
	SS12#	Input	Chip-select input pin.		
	Extended serial mode				
	RXDX12	Input	Input pin for data reception by SCIf.		
	TXDX12	Output	Output pin for data transmission by SCIf.		
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.		
I ² C bus interface	SCL0	I/O	Input/output pin for I ² C bus interface clocks. Bus can be directly driven by the N-channel open drain output.		
	SDA0	I/O	Input/output pin for I ² C bus interface data. Bus can be directly driven by the N-channel open drain output.		
Serial peripheral	RSPCKA	I/O	Input/output pin for the RSPI clock.		
interface	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.		
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.		
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.		
-	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.		

Table 1.4Pin Functions (2/3)

Table 1.4	Pin Functions (3/3)

Classifications	Pin Name	I/O	Description
USB 2.0 host/	USB0_DP	I/O	D+ I/O pin of the USB on-chip transceiver.
function module	USB0_DM	I/O	D- I/O pin of the USB on-chip transceiver.
	USB0_VBUS	Input	USB cable connection monitor pin.
	USB0_EXICEN	Output	Low-power control signal for the OTG chip.
	USB0_VBUSEN	Output	VBUS (5 V) supply enable signal for the OTG chip.
	USB0_OVRCURA, USB0_OVRCURB	Input	External overcurrent detection pins.
	USB0_ID	Input	Mini-AB connector ID input pin during operation in OTG mode.
12-bit A/D converter	AN000 to AN004, AN006, AN008 to AN015	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0#	Input	Input pin for the external trigger signals that start the A/D conversion.
D/A converter	converter DA0, DA1 Output Output pins for the analog signals to be processed by the I		Output pins for the analog signals to be processed by the D/A converted
I/O ports	P03, P05	I/O	2-bit input/output pins.
	P14 to P17	I/O	4-bit input/output pins.
	P26, P27	I/O	2-bit input/output pins.
	P30 to P32, P35	I/O	4-bit input/output pins (P35 input pin).
	P40 to P44, P46	I/O	6-bit input/output pins.
	P54, P55	I/O	2-bit input/output pins.
	PA0, PA1, PA3, PA4, PA6	I/O	5-bit input/output pins.
	PB0, PB1, PB3, PB5 to PB7	I/O	6-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH7	Input	1-bit input pin.
	PJ6, PJ7	I/O	2-bit input/output pins.

Note 1. For external clock input.

 Table 1.7
 List of Pins and Pin Functions (48-Pin LFQFP/HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
39		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
40		PE7			IRQ7/AN015
41		P46* ²			AN006
42		P42* ²			AN002
43		P41* ²			AN001
44	VREFL0	PJ7*2			
45		P40* ²			AN000
46	VREFH0	PJ6* ²			
47	AVSS0				
48	AVCC0				

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

Table 1.8List of Pins and Pin Functions (40-Pin HWQFN) (2/2)

	Power Supply,				
Pin	Clock, System		Timers	Communication	
No.	Control	I/O Port	(MTU, POE, RTC)	(SCIe, SCIf, RSPI, RIIC, USB)	Others

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCCO.

Table 4.1	List of I/O Registers (Address Order) (10/16)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 A025h	SCI1	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 A026h	SCI1	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 A027h	SCI1	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A028h	SCI1	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 A029h	SCI1	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 A02Ah	SCI1	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 A02Bh	SCI1	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 A02Ch	SCI1	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
0008 A02Dh	SCI1	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 A0A0h	SCI5	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A0A1h	SCI5	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A0A2h	SCI5	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A0A3h	SCI5	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A0A4h	SCI5	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A0A5h	SCI5	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 A0A6h	SCI5	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 A0A7h	SCI5	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A0A8h	SCI5	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 A0A9h	SCI5	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 A0AAh	SCI5	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 A0ABh	SCI5	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 A0ACh	SCI5	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
0008 A0ADh	SCI5	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 B000h	CAC	CAC Control Register 0	CACR0	8	8	2 or 3 PCLKB
0008 B001h	CAC	CAC Control Register 1	CACR1	8	8	2 or 3 PCLKB
0008 B002h	CAC	CAC Control Register 2	CACR2	8	8	2 or 3 PCLKB
0008 B003h	CAC	CAC Interrupt Request Enable Register	CAICR	8	8	2 or 3 PCLKB
0008 B004h	CAC	CAC Status Register	CASTR	8	8	2 or 3 PCLKB
0008 B006h	CAC	CAC Upper-Limit Value Setting Register	CAULVR	16	16	2 or 3 PCLKB
0008 B008h	CAC	CAC Lower-Limit Value Setting Register	CALLVR	16	16	2 or 3 PCLKB
0008 B00Ah	CAC	CAC Counter Buffer Register	CACNTBR	16	16	2 or 3 PCLKB
0008 B080h	DOC	DOC Control Register	DOCR	8	8	2 or 3 PCLKB
0008 B082h	DOC	DOC Data Input Register	DODIR	16	16	2 or 3 PCLKB
0008 B084h	DOC	DOC Data Setting Register	DODSR	16	16	2 or 3 PCLKB
0008 B100h	ELC	Event Link Control Register	ELCR	8	8	2 or 3 PCLKB
0008 B102h	ELC	Event Link Setting Register 1	ELSR1	8	8	2 or 3 PCLKB
0008 B103h	ELC	Event Link Setting Register 2	ELSR2	8	8	2 or 3 PCLKB
0008 B104h	ELC	Event Link Setting Register 3	ELSR3	8	8	2 or 3 PCLKB
0008 B105h	ELC	Event Link Setting Register 4	ELSR4	8	8	2 or 3 PCLKB
0008 B108h	ELC	Event Link Setting Register 7	ELSR7	8	8	2 or 3 PCLKB
0008 B110h	ELC	Event Link Setting Register 15	ELSR15	8	8	2 or 3 PCLKB
0008 B111h	ELC	Event Link Setting Register 16	ELSR16	8	8	2 or 3 PCLKB
0008 B113h	ELC	Event Link Setting Register 18	ELSR18	8	8	2 or 3 PCLKB
0008 B115h	ELC	Event Link Setting Register 20	ELSR20	8	8	2 or 3 PCLKB
0008 B117h	ELC	Event Link Setting Register 22	ELSR22	8	8	2 or 3 PCLKB
0008 B119h	ELC	Event Link Setting Register 24	ELSR24	8	8	2 or 3 PCLKB
0008 B11Ah	ELC	Event Link Setting Register 25	ELSR25	8	8	2 or 3 PCLKB
0008 B11Fh	ELC	Event Link Option Setting Register A	ELOPA	8	8	2 or 3 PCLKB
0008 B120h	ELC	Event Link Option Setting Register B	ELOPB	8	8	2 or 3 PCLKB
008 B121h	ELC	Event Link Option Setting Register C	ELOPC	8	8	2 or 3 PCLKB
	ELC	Event Link Option Setting Register C Port Group Setting Register 1	PGR1	8	8	2 or 3 PCLKB 2 or 3 PCLKB

Table 4.1	List of I/O Registers (Address Order) (11/16)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Acces States
0008 B127h	ELC	Port Buffer Register 1	PDBF1	8	8	2 or 3 PCLKB
0008 B129h	ELC	Event Link Port Setting Register 0	PEL0	8	8	2 or 3 PCLKB
0008 B12Ah	ELC	Event Link Port Setting Register 1	PEL1	8	8	2 or 3 PCLKB
0008 B12Dh	ELC	Event Link Software Event Generation Register	ELSEGR	8	8	2 or 3 PCLKB
0008 B300h	SCI12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 B304h	SCI12	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 B306h	SCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
008 B309h	SCI12	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
008 B30Ah	SCI12	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
008 B30Bh	SCI12	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
008 B30Ch	SCI12	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
008 B320h	SCI12	Extended Serial Mode Enable Register	ESMER	8	8	2 or 3 PCLKB
008 B321h	SCI12	Control Register 0	CR0	8	8	2 or 3 PCLKB
008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB
008 B323h	SCI12	Control Register 2	CR2	8	8	2 or 3 PCLKB
	SCI12		CR3	8	8	
008 B324h		Control Register 3 Port Control Register	PCR			2 or 3 PCLKB
008 B325h	SCI12	Port Control Register		8	8	2 or 3 PCLKB
008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB
008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB
008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB
008 B329h	SCI12	Control Field 0 Data Register	CF0DR	8	8	2 or 3 PCLKB
008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CF0CR	8	8	2 or 3 PCLKB
008 B32Bh	SCI12	Control Field 0 Receive Data Register	CF0RR	8	8	2 or 3 PCLKB
008 B32Ch	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB
008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB
008 B32Eh	SCI12	Control Field 1 Compare Enable Register	CF1CR	8	8	2 or 3 PCLKB
008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB
008 B330h	SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB
008 B331h	SCI12	Timer Mode Register	TMR	8	8	2 or 3 PCLKB
008 B332h	SCI12	Timer Prescaler Register	TPRE	8	8	2 or 3 PCLKB
008 B333h	SCI12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB
008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Conditions: VSS = AVSS0 = VREFL0 = VSS_USB = 0 V

Item		Symbol	Value	Unit
Power supply voltage		VCC, VCC_USB	-0.3 to +4.6	V
Input voltage	Ports for 5 V tolerant*1	V _{in} –0.3 to +6.5		V
	Ports P40 to P44, P46, ports PJ6, PJ7	V _{in}	-0.3 to AVCC0 +0.3	V
	Ports other than above	V _{in}	-0.3 to VCC +0.3	V
Reference power supply voltage		VREFH0	REFH0 -0.3 to AVCC0 +0.3	
Analog power supply	y voltage	AVCC0	-0.3 to +4.6	
Analog input voltage		V _{AN}	-0.3 to AVCC0 + 0.3 (when AN000 to AN004 and AN006 used) -0.3 to VCC + 0.3 (when AN008 to AN015 used)	V
Operating temperature*2		T _{opr}	-40 to +85 -40 to +105	°C
Storage temperature		T _{stg}	-55 to +125	°C

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, and between the VREFH0 and VREFL0 pins. Place capacitors of about 0.1 μ F as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance.

Connect the VCL pin to a VSS pin via a 4.7 µF capacitor. The capacitor must be placed close to the pin, refer to section 5.12.1, Connecting VCL Capacitor and Bypass Capacitors.

Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered. The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

If input voltage (within the specified range from -0.3 to + 6.5V) is applied to 5-V tolerant ports, it will not cause problems such as damage to the MCU.

Note 1. Ports P16, P17, PA6, and PB0 are 5 V tolerant. Note 2. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to 1.2 List of Products.

Table 5.2	Operating Conditions
-----------	-----------------------------

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltages	VCC*1	When USB not used	1.8	—	3.6	V
		When USB used	3.0	—	3.6	V
	VSS		_	0	—	V
USB power supply voltages	VCC_USB		_	VCC	—	V
	VSS_USB			0	—	V
Analog power supply voltages	AVCC0*1, *2		1.8	—	3.6	V
	AVSS0		_	0	—	V
	VREFH0		1.8	—	AVCC0	V
	VREFL0		_	0	—	V

Note 1. When powering on AVCC0 and VCC, power them on at the same time or VCC first.

Note 2. For details, refer to section 30.7.10, Voltage Range of Analog Power Supply Pins in the User's Manual: Hardware.

Table 5.18 Permissible Output Currents (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C} \text{ (G version)}$

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	mA
(average value per pin)	Ports other than above	-	8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣI_{OL}	1.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		20	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7		20	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		20	
	Total of all output pins	-	40	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OH}	-0.1	
(average value per pin)	Ports other than above	-	-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7		-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣΙ _{ΟΗ}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7		-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		-15	
	Total of all output pins		-40	

Note: Do not exceed the permissible total supply current.

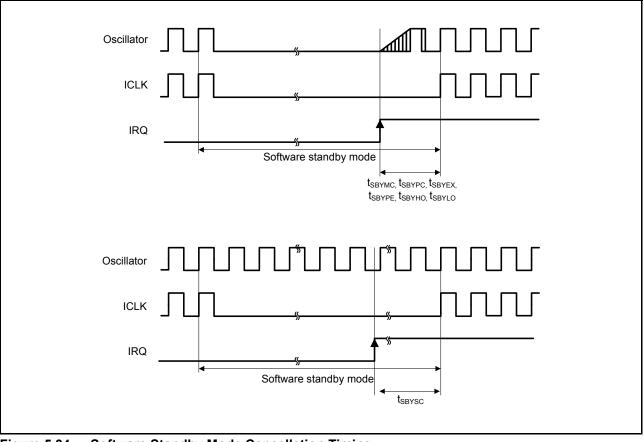


Figure 5.34 Software Standby Mode Cancellation Timing

Table 5.29 Timing of Recovery from Low Power Consumption Modes (4)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep	High-speed mode*2	t _{DSLP}		2	3.5	μs	
sleep mode*1	Middle-speed mode*3	t _{DSLP}		3	4	μs	
	Low-speed mode*4	t _{DSLP}		400	500	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. Oscillators continue oscillating in deep sleep mode.

Note 2. When the frequency of the system clock is 32 MHz.

Note 3. When the frequency of the system clock is 12 MHz.

Note 4. When the frequency of the system clock is 32.768 kHz.

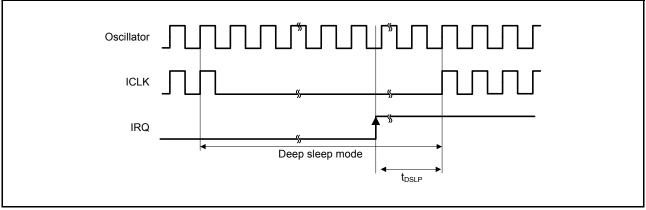


Figure 5.35 Deep Sleep Mode Cancellation Timing

Table 5.30Timing of Recovery from Low Power Consumption Modes (5)Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Mode before Transition	Mode after Transition		Т	Unit		
		ICLK Frequency	Min.	Тур.	Max.	Unit
High-speed operating mode	Middle-speed operating mode	8 MHz	_	10	—	μs
Middle-speed operating mode	High-speed operating mode	8 MHz	—	37.5	—	μs
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	—	213.62	—	μs
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	—	183.11	—	μs

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

5.3.5 **Timing of On-Chip Peripheral Modules**

Timing of On-Chip Peripheral Modules (1) Table 5.32

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	ŀ	tem		Symbol	Min.	Max.	Unit*1	Test Conditions
I/O ports	Input data pulse width			t _{PRW}	1.5	_	t _{Pcyc}	Figure 5.38
MTU2	TU2 Input capture input pulse width		Single-edge setting	t _{TICW}	1.5	_	t _{Pcyc}	Figure 5.39
			Both-edge setting		2.5	_		
	Timer clock pulse width		Single-edge setting	t _{TCKWH,}	1.5	_	t _{Pcyc}	Figure 5.40
			Both-edge setting	t _{TCKWL}	2.5	_	, ,	
			Phase counting mode	-	2.5	-		
POE	POE# input pulse width			t _{POEW}	1.5	_	t _{Pcyc}	Figure 5.41
SCI	Input clock cycle		Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure 5.42
			Clock synchronous		6	_	_	
	Input clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time			t _{SCKr}	—	20	ns	
	Input clock fall time			t _{SCKf}	—	20	ns	
	Output clock cycle		Asynchronous	t _{Scyc}	16	_	t _{Pcyc}	Figure 5.43
			Clock synchronous	-	4	_		C = 30 pF
	Output clock pulse width	utput clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time			t _{SCKr}	—	20	ns	
	Output clock fall time		t _{SCKf}	—	20	ns		
	Transmit data delay time (master)	Clock synchro	onous	t _{TXD}	_	40	ns	
	Transmit data delay time	Clock	2.7 V or above		—	65	ns	
	(slave)	synchronous	1.8 V or above		—	100	ns	
	Receive data setup time	Clock	2.7 V or above	t _{RXS}	65	_	ns	
	(master)	synchronous	1.8 V or above		90	_	ns	
	Receive data setup time (slave)	Clock synchro	pnous		40	_	ns	
	Receive data hold time	Clock synchro	onous	t _{RXH}	40		ns	
A/D converter	Trigger input pulse width	1		t _{TRGW}	1.5	_	t _{Pcyc}	Figure 5.44
CAC	CACREF input pulse widt	h	t _{Pcyc} ≤ t _{cac} *2	t _{CACREF}	4.5 t _{cac} + 3 t _{Pcyc}	-	ns	
			t _{Pcyc} > t _{cac} *2		5 t _{cac} + 6.5 t _{Pcyc}			
CLKOUT	JT CLKOUT pin output cycle*4 CLKOUT pin high pulse width*3 CLKOUT pin low pulse width*3		VCC = 2.7 V or above	t _{Ccyc}	125	_	ns	
			VCC = 1.8 V or above		250			
			VCC = 2.7 V or above	t _{CH}	35	_	ns	
			VCC = 1.8 V or above	+	70			
		uurv	VCC = 2.7 V or above VCC = 1.8 V or above	t _{CL}	35 70	_	ns	
	CLKOUT pin output rise ti	me	VCC = 2.7 V or above	t _{Cr}		15	ns	
		-	VCC = 1.8 V or above	°ОГ		30	-	
	CLKOUT pin output fall tir	ne	VCC = 2.7 V or above	t _{Cf}	—	15	ns	1
			VCC = 1.8 V or above	1		30	1	

Note 1. t_{Pcyc}: PCLK cycle Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[2:0] bits = 000b), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).

Note 4. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[2:0] bits = 010b and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

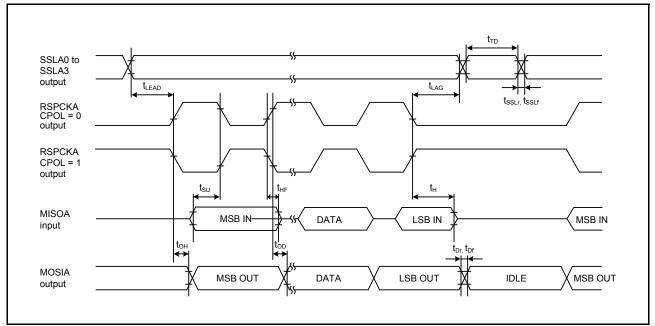
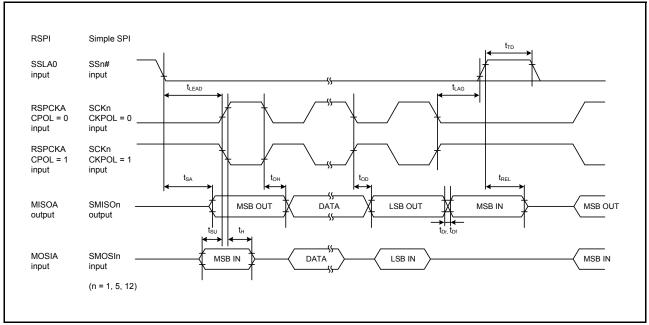
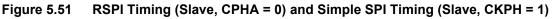




Figure 5.50 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2)

RENESAS

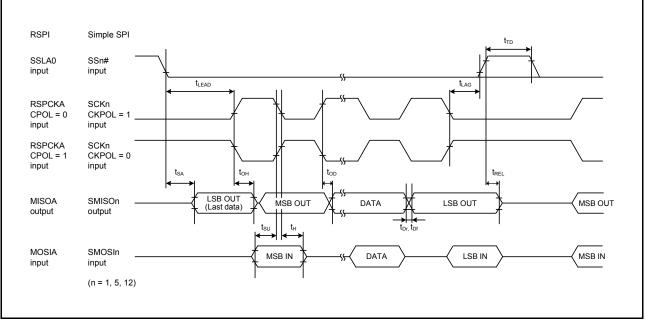


Figure 5.52 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0)

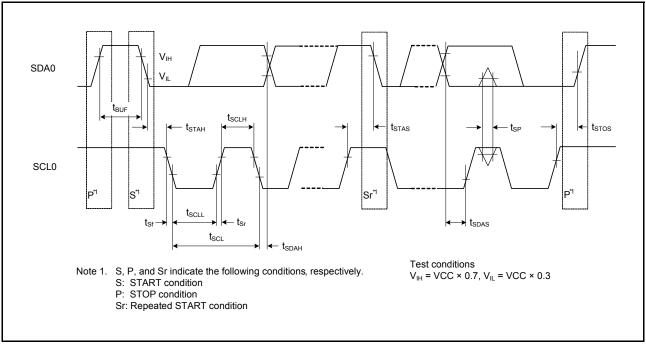
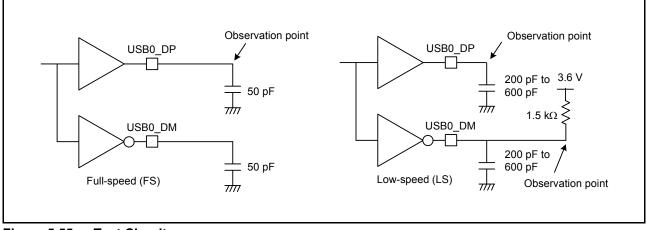



Figure 5.53 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

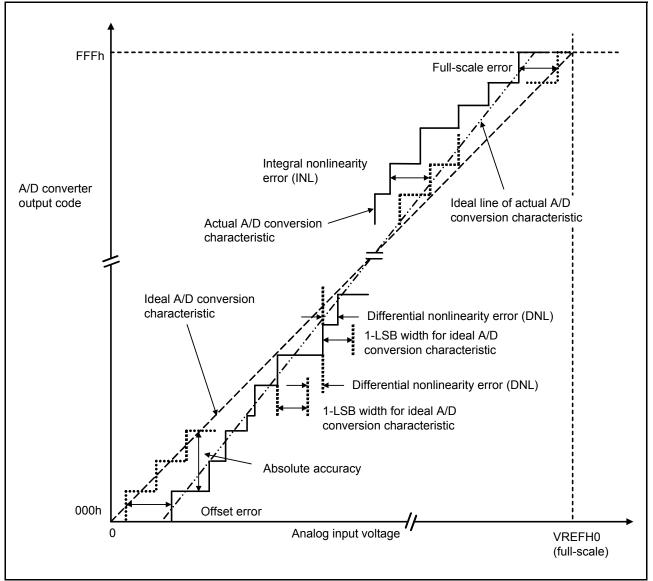


Figure 5.57 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

5.6 D/A Conversion Characteristics

Table 5.43 D/A Conversion Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, fPCLKB $\le 32 \text{ MHz}$, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Min.	Тур.	Max.	Unit	Test Conditions	
Resolution		_	—	8	Bit	
Conversion time	VCC = 2.7 to 3.6 V	_	—	3.0	μs	35-pF capacitive load
	VCC = 1.6 to 2.7 V	—	_	6.0		
Absolute accuracy	VCC = 2.4 to 3.6 V	—	_	±3.0	LSB	$2-M\Omega$ resistive load
	VCC = 1.8 to 2.4 V	_	_	±3.5		
	VCC = 2.4 to 3.6 V	_	—	±2.0	LSB	$4-M\Omega$ resistive load
	VCC = 1.8 to 2.4 V	_	—	±2.5	1	
RO output resistance		_	6.4	_	kΩ	

5.7 Temperature Sensor Characteristics

Table 5.44 Temperature Sensor Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	—	_	±1.5	_	°C	2.4 V or above
		_	±2.0	_		Below 2.4 V
Temperature slope	—	—	-3.65	_	mV/°C	
Output voltage (at 25°C)	—	—	1.05	_	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	—	—	5	μs	
Sampling time	_	5	—	—	μs]

5.8 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 5.58, Figure 5.59
	Voltage detection	V _{det1_4}	3.00	3.10	3.20	V	Figure 5.60
circuit (LVD1)*1	circuit (LVD1)* ¹	V _{det1_5}	2.91	3.00	3.09		At falling edge VCC
		V _{det1_6}	2.81	2.90	2.99		
		V _{det1_7}	2.70	2.79	2.88		
		V _{det1_8}	2.60	2.68	2.76		
		V _{det1_9}	2.50	2.58	2.66		
		V _{det1_A}	2.40	2.48	2.56		
		V _{det1_B}	1.99	2.06	2.13		
		V _{det1_C}	1.90	1.96	2.02		
		V _{det1_D}	1.80	1.86	1.92		

Table 5.45 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 5.46 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Voltage detection circuit	V _{det2_0}	2.71	2.90	3.09	V	Figure 5.61
	(LVD2)*1	V _{det2_1}	2.43	2.60	2.77		At falling edge VCC
		V _{det2_2}	1.87	2.00	2.13		
		V _{det2_3} *2	1.69	1.80	1.91		
Wait time after power-on	At normal startup*3	t _{POR}	_	9.1	—	ms	Figure 5.59
reset cancellation	During fast startup time*4	t _{POR}	_	1.6	—		
Wait time after voltage monitoring 1 reset	Power-on voltage monitoring 1 reset disabled* ³	t _{LVD1}	_	568	—	μs	Figure 5.60
cancellation	Power-on voltage monitoring 1 reset enabled* ⁴		_	100	—		
Wait time after voltage mo	nitoring 2 reset cancellation	t _{LVD2}		100	—	μs	Figure 5.61
Response delay time		t _{det}	_	—	350	μs	Figure 5.58
Minimum VCC down time*	5	t _{VOFF}	350	—	—	μs	Figure 5.58, VCC = 1.0 V or above
Power-on reset enable tim	le	t _{W(POR)}	1	—	—	ms	Figure 5.59, VCC = below 1.0 V
LVD operation stabilization	n time (after LVD is enabled)	Td _(E-A)	_	—	300	μs	Figure 5.60, Figure 5.61
Hysteresis width (LVD1 ar	nd LVD2)	V _{LVH}	_	70	—	mV	Vdet1_4 selected
			_	60	—		Vdet1_5 to 9, LVD2 selected
		_	50	—		When selection is from among Vdet1_A to B.	
			—	40	—		When selection is from among Vdet1_C to D.

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.

Note 2. Vdet2_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.

Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 4. When OFS1.(STUPLVD1REN, FASTSTUP) ≠ 11b.

Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

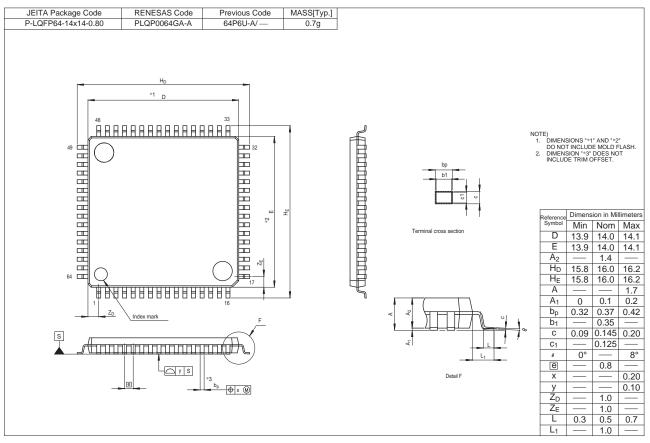


Figure B 64-Pin LQFP (PLQP0064GA-A)

Rev.	Date		Description
Rev.	Date	Page	Summary
1.20	Sep 29, 2014	85	Figure 5.41 RSPI Clock Timing and Simple SPI Clock Timing, Figure 5.42 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 1) changed
		86	Figure 5.43 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Divided by 2) added, Figure 5.44 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0) changed
		87	Figure 5.45 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2) added, Figure 5.46 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1) changed
		88	Figure 5.47 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0) changed
		89	Table 5.37 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics) and Figure 5.49 USB0_DP and USB0_DM Output Timing, changed
	90	90	Figure 5.50 Test Circuit, changed
		91	Table 5.38 A/D Conversion Characteristics (1), Figure 5.51 AVCC0 to AVREFH0 Voltage Range, changed
		92	Table 5.39 A/D Conversion Characteristics (2), Table 5.40 A/D Conversion Characteristics (3) changed
		101	Table 5.49 ROM (Flash Memory for Code Storage) Characteristics (2) and Table 5.50 ROM (Flash Memory for Code Storage) Characteristics (3), changed
		102	Table 5.52 E2 DataFlash Characteristics (2), Table 5.53 E2 DataFlash Characteristics (3) changed
1.21	Dec 09, 2014	1. Overvie	W
		2 to 4	Table 1.1 Outline of Specifications Unique ID, changed
		5. Electrica	al Characteristics
		51	Table 5.3 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed
		61	Table 5.19 Output Voltage (1) and Table 5.20 Output Voltage (2), changed
		102	Table 5.52 E2 DataFlash Characteristics (2): high-speed operating mode and Table 5.53 E2DataFlash Characteristics (3): middle-speed operating mode, changed

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.