

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51111adne-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Products

Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Group	Part No.	Orderable Part No.	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Maximum Operating Frequency	Operating Temperature
RX111	R5F51118AGFM	R5F51118AGFM#3A	PLQP0064KB-A					
	R5F51118AGFK	R5F51118AGFK#3A	PLQP0064GA-A	E10 Khutoo				
	R5F51118AGFL	R5F51118AGFL#3A	PLQP0048KB-A	512 KDytes				
	R5F51118AGNE	R5F51118AGNE#UA	PWQN0048KB-A		C4 Khutaa			
	R5F51117AGFM	R5F51117AGFM#3A	PLQP0064KB-A		64 KDytes			
	R5F51117AGFK	R5F51117AGFK#3A	PLQP0064GA-A	284 Khytos				
	R5F51117AGFL	R5F51117AGFL#3A	PLQP0048KB-A	304 KDytes				
	R5F51117AGNE	R5F51117AGNE#UA	PWQN0048KB-A					
	R5F51116AGFM	R5F51116AGFM#3A	PLQP0064KB-A					
	R5F51116AGFK	R5F51116AGFK#3A	PLQP0064GA-A	256 Khyton	22 Khutaa			
	R5F51116AGFL	R5F51116AGFL#3A	PLQP0048KB-A	200 NDytes	52 NUYLES			
	R5F51116AGNE	R5F51116AGNE#UA	PWQN0048KB-A					
	R5F51115AGFM	R5F51115AGFM#3A	PLQP0064KB-A					
	R5F51115AGFK	R5F51115AGFK#3A	PLQP0064GA-A	129 Khytos				
	R5F51115AGFL	R5F51115AGFL#3A	PLQP0048KB-A	120 Kbytes				
	R5F51115AGNE	R5F51115AGNE#UA	PWQN0048KB-A		16 Khytos			
	R5F51114AGFM	R5F51114AGFM#3A	PLQP0064KB-A		TO Royles	8 Kbytes		
	R5F51114AGFK	R5F51114AGFK#3A	PLQP0064GA-A	96 Khytes	8 Kbyte		32 MHz	-40 to +105°C
	R5F51114AGFL	R5F51114AGFL#3A	PLQP0048KB-A	30 hbytes				
	R5F51114AGNE	R5F51114AGNE#UA	PWQN0048KB-A					
	R5F51113AGFM	R5F51113AGFM#3A	PLQP0064KB-A					
	R5F51113AGFK	R5F51113AGFK#3A	PLQP0064GA-A					
	R5F51113AGFL	R5F51113AGFL#3A	PLQP0048KB-A	64 Kbytes				
	R5F51113AGNE	R5F51113AGNE#UA	PWQN0048KB-A					
	R5F51113AGNF	R5F51113AGNF#UA	PWQN0040KC-A		10 Khytes			
	R5F51111AGFM	R5F51111AGFM#3A	PLQP0064KB-A		TO Royles			
	R5F51111AGFK	R5F51111AGFK#3A	PLQP0064GA-A					
	R5F51111AGFL	R5F51111AGFL#3A	PLQP0048KB-A	32 Kbytes				
	R5F51111AGNE	R5F51111AGNE#UA	PWQN0048KB-A					
	R5F51111AGNF	R5F51111AGNF#UA	PWQN0040KC-A					
	R5F5111JAGFM	R5F5111JAGFM#3A	PLQP0064KB-A					
	R5F5111JAGFK	R5F5111JAGFK#3A	PLQP0064GA-A					
	R5F5111JAGFL	R5F5111JAGFL#3A	PLQP0048KB-A	16 Kbytes	8 Kbytes			
	R5F5111JAGNE	R5F5111JAGNE#UA	PWQN0048KB-A					
	R5F5111JAGNF	R5F5111JAGNF#UA	PWQN0040KC-A					

Table 1.3List of Products (1/2)

Table 1.4	Pin Functions	(3/3)
		\-··/

Classifications	Pin Name	I/O	Description
USB 2.0 host/	USB0_DP	I/O	D+ I/O pin of the USB on-chip transceiver.
function module	USB0_DM	I/O	D- I/O pin of the USB on-chip transceiver.
	USB0_VBUS	Input	USB cable connection monitor pin.
	USB0_EXICEN	Output	Low-power control signal for the OTG chip.
	USB0_VBUSEN	Output	VBUS (5 V) supply enable signal for the OTG chip.
	USB0_OVRCURA, USB0_OVRCURB	Input	External overcurrent detection pins.
	USB0_ID	Input	Mini-AB connector ID input pin during operation in OTG mode.
12-bit A/D converter	AN000 to AN004, AN006, AN008 to AN015	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0#	Input	Input pin for the external trigger signals that start the A/D conversion.
D/A converter	DA0, DA1	Output	Output pins for the analog signals to be processed by the D/A converter.
I/O ports	P03, P05	I/O	2-bit input/output pins.
	P14 to P17	I/O	4-bit input/output pins.
	P26, P27	I/O	2-bit input/output pins.
	P30 to P32, P35	I/O	4-bit input/output pins (P35 input pin).
	P40 to P44, P46	I/O	6-bit input/output pins.
	P54, P55	I/O	2-bit input/output pins.
	PA0, PA1, PA3, PA4, PA6	I/O	5-bit input/output pins.
	PB0, PB1, PB3, PB5 to PB7	I/O	6-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH7	Input	1-bit input pin.
	PJ6, PJ7	I/O	2-bit input/output pins.

Note 1. For external clock input.

2. CPU

Figure 2.1 shows the register set of the CPU.

	b31	J		t
		R0 (SP) [*]	1	
		R1		
		R2		
		R3		
		R4		
		R5		
		R6		
		R7		
		R8		
		R9		
		R10		
		R11		
		R12		
		R13		
		R14		
		R15		
		ISP USP	(Interrupt stack pointer) (User stack pointer)	
		INTB	(Interrupt table register)	
		PC	(Program counter)	
		PSW	(Processor status word)	
		BPC	(Backup PC)	
	1	BPSW	(Backup PSW)	
		FINTV	(Fast interrupt vector register)	
DSP instruction register		FINTV	(Fast interrupt vector register)	
DSP instruction register b63		FINTV	(Fast interrupt vector register)	b

Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

When executing an instruction after writing to multiple registers, only read the last I/O register written to and execute the instruction using that value; it is not necessary to execute the instruction using the values written to all the registers.

(3) Number of cycles necessary for accessing I/O registers

See Table 4.1 for details on the number of clock cycles necessary for accessing I/O registers. The number of access cycles to I/O registers is obtained by following equation.^{*1}

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral buses 1 to 6

The number of bus cycles of internal peripheral buses 1 to 6 differs according to the register to be accessed. When peripheral functions connected to internal peripheral buses 2 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added. The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the bus access from the different bus master (DTC).

(4) Notes on sleep mode and mode transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

Table 4.1	List of I/O	Registers	(Address	Order) (8/16)
-----------	-------------	-----------	----------	---------------

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 864Ah	MTU4	Timer A/D Converter Start Request Cycle Set Buffer Register B	TADCOBRB	16	16	2 or 3 PCLKB
0008 8660h	MTU	Timer Waveform Control Register	TWCR	8	8, 16	2 or 3 PCLKB
0008 8680h	MTU	Timer Start Register	TSTR	8	8, 16	2 or 3 PCLKB
0008 8681h	MTU	Timer Synchronous Register	TSYR	8	8, 16	2 or 3 PCLKB
0008 8684h	MTU	Timer Read/Write Enable Register	TRWER	8	8, 16	2 or 3 PCLKB
0008 8690h	MTU0	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8691h	MTU1	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8692h	MTU2	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8693h	MTU3	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8694h	MTU4	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8695h	MTU5	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8700h	MTU0	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8701h	MTU0	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8702h	MTU0	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB
0008 8703h	MTU0	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB
0008 8704h	MTU0	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8705h	MTU0	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8706h	MTU0	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8708h	MTU0	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 870Ah	MTU0	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 870Ch	MTU0	Timer General Register C	TGRC	16	16	2 or 3 PCLKB
0008 870Eh	MTU0	Timer General Register D	TGRD	16	16	2 or 3 PCLKB
0008 8720h	MTU0	Timer General Register E	TGRE	16	16	2 or 3 PCLKB
0008 8722h	MTU0	Timer General Register F	TGRF	16	16	2 or 3 PCLKB
0008 8724h	MTU0	Timer Interrupt Enable Register 2	TIER2	8	8	2 or 3 PCLKB
0008 8726h	MTU0	Timer Buffer Operation Transfer Mode Register	ТВТМ	8	8	2 or 3 PCLKB
0008 8780h	MTU1	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8781h	MTU1	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8782h	MTU1	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
0008 8784h	MTU1	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8785h	MTU1	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8786h	MTU1	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8788h	MTU1	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 878Ah	MTU1	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8790h	MTU1	Timer Input Capture Control Register	TICCR	8	8	2 or 3 PCLKB
0008 8800h	MTU2	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8801h	MTU2	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8802h	MTU2	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
0008 8804h	MTU2	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8805h	MTU2	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8806h	MTU2	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8808h	MTU2	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 880Ah	MTU2	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8880h	MTU5	Timer Counter U	TCNTU	16	16	2 or 3 PCLKB
0008 8882h	MTU5	Timer General Register U	TGRU	16	16	2 or 3 PCLKB
0008 8884h	MTU5	Timer Control Register U	TCRU	8	8	2 or 3 PCLKB
0008 8886h	MTU5	Timer I/O Control Register U	TIORU	8	8	2 or 3 PCLKB
0008 8890h	MTU5	Timer Counter V	TCNTV	16	16	2 or 3 PCLKB
0008 8892h	MTU5	Timer General Register V	TGRV	16	16	2 or 3 PCLKB
0008 8894h	MTU5	Timer Control Register V	TCRV	8	8	2 or 3 PCLKB
0008 8896h	MTU5	Timer I/O Control Register V	TIORV	8	8	2 or 3 PCLKB
0008 88A0h	MTU5	Timer Counter W	TCNTW	16	16	2 or 3 PCLKB

Table 5.7DC Characteristics (5) (2/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

	Item					Тур *4	Max	Unit	Test Conditions
Supply	Low-speed	Normal	No peripheral operation*8	ICLK = 32.768 kHz	I _{CC}	4.0	—	μA	
current*1 operating mode operating mode	operating mode	All peripheral operation: Normal* ^{9, *10}	ICLK = 32.768 kHz		11.5	_			
			All peripheral operation: Max.* ^{9, *10}	ICLK = 32.768 kHz			40		
		Sleep mode	No peripheral operation*8	ICLK = 32.768 kHz		2.2	_		
			All peripheral operation: Normal ^{*9}	ICLK = 32.768 kHz		7.1	_		
		Deep sleep	No peripheral operation*8	ICLK = 32.768 kHz		1.8			
		mode	All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		5.3			

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.

Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to divided by 64.

Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.

Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Figure 5.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

5.2.1 Standard I/O Pin Output Characteristics (1)

Figure 5.12 to Figure 5.15 show the characteristics of general ports (except for the RIIC output pin, ports P40 to P44, P46, ports PJ6, PJ7)

Figure 5.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at T_a = 25°C (Reference Data)

Figure 5.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 1.8 V (Reference Data)

5.2.2 Standard I/O Pin Output Characteristics (2)

Figure 5.16 to Figure 5.18 show the characteristics of the RIIC output pin.

Figure 5.16 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at T_a = 25°C (Reference Data)

Figure 5.17 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

Figure 5.21 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 2.7 V (Reference Data)

Figure 5.22 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 3.3 V (Reference Data)

RENESAS

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item					Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	High-speed mode	Crystal connected to	Main clock oscillator operating* ²	t _{SBYMC}		2	3	ms	Figure 5.34	
	main clock oscillator	Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms			
		External clock input to main	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs		
		clock oscillator	Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	-	70	95	μs		
		Sub-clock oscillator operating		t _{SBYSC}	-	650	800	μs		
		HOCO clock oscillator operating*6		t _{SBYHO}	_	40	55	μs		
		LOCO clock oscill	ator operating	t _{SBYLO}		40	55	μs		

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.29 Timing of Recovery from Low Power Consumption Modes (4)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep	High-speed mode*2	t _{DSLP}		2	3.5	μs	
sleep mode*1	Middle-speed mode*3	t _{DSLP}		3	4	μs	
	Low-speed mode*4	t _{DSLP}		400	500	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. Oscillators continue oscillating in deep sleep mode.

Note 2. When the frequency of the system clock is 32 MHz.

Note 3. When the frequency of the system clock is 12 MHz.

Note 4. When the frequency of the system clock is 32.768 kHz.

Figure 5.35 Deep Sleep Mode Cancellation Timing

Table 5.30Timing of Recovery from Low Power Consumption Modes (5)Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Mode before Transition	Mode offer Transition		Т	Llnit		
		ICLK Frequency	Min.	Тур.	Max.	Unit
High-speed operating mode	Middle-speed operating mode	8 MHz	—	10	_	μs
Middle-speed operating mode	High-speed operating mode	8 MHz	—	37.5		μs
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	—	213.62	_	μs
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	—	183.11	—	μs

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Control Signal Timing 5.3.4

Table 5.31 **Control Signal Timing**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
NMI pulse width	t _{NMIW}	200	—	—	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1	—	—		(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns	
		200	—	—		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns	
		t _{NMICK} × 3.5* ²	_	—		(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns	
IRQ pulse width	t _{IRQW}	200	_	—	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1	_	—		(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns	
		200	_	—		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns	
		t _{IRQCK} × 3.5* ³	_	_		(IRQFLTE0.FLTENi = 1)	t _{IRQCK} × 3 > 200 ns	

Note: • 200 ns minimum in software standby mode. Note 1. t_{Pcyc} indicates the cycle of PCLKB.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 5.36 **NMI Interrupt Input Timing**

Figure 5.37 **IRQ Interrupt Input Timing**

Table 5.36 Timing of On-Chip Peripheral Modules (5)

Conditions: 2.7 V ≤ VCC = VCC_USB ≤ 3.6 V, 2.7 V ≤ AVSS0 ≤ 3.6 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB ≤ 32 MHz, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Max.	Unit	Test Conditions	
Simple I ² C	SDA0 input rise time	t _{Sr}	—	1000	ns	Figure 5.53	
(Standard mode)	SDA0 input fall time	t _{Sf}	—	300	ns	-	
	SDA0 input spike pulse removal time	t _{SP}	0	4 × t _{pcyc} *1	ns	-	
	Data input setup time	t _{SDAS}	250	—	ns	-	
	Data input hold time	t _{SDAH}	0	—	ns		
	SCL0, SDA0 capacitive load	Cb	—	400	pF		
Simple I ² C (Fast mode)	SCL0, SDA0 input rise time	t _{Sr}	—	300	ns	Figure 5.53	
	SCL0, SDA0 input fall time	t _{Sf}	—	300	ns		
	SCL0, SDA0 input spike pulse removal time	t _{SP}	0	4 × t _{pcyc} *1	ns		
	Data input setup time	t _{SDAS}	100	—	ns		
	Data input hold time	t _{SDAH}	0	—	ns		
	SCL0, SDA0 capacitive load	Cb	—	400	pF]	

Note: • t_{Pcyc}: PCLK cycle Note 1. This applies when the SMR.CKS[1:0] bits = 00b and the SNFR.NFCS[2:0] bits = 010b while the SNFR.NFE bit = 1 and the digital filter is enabled.

Figure 5.38 **I/O Port Input Timing**

Figure 5.39 **MTU2** Input/Output Timing

Figure 5.57 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

5.9 Oscillation Stop Detection Timing

Table 5.47 Oscillation Stop Detection Circuit Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol Min.		Тур.	Тур. Мах.		Test Conditions
Detection time	t _{dr}	—	—	1	ms	Figure 5.62

Figure 5.62 Oscillation Stop Detection Timing

5.10 ROM (Flash Memory for Code Storage) Characteristics

Table 5.48 ROM (Flash Memory for Code Storage) Characteristics (1)

	Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/era	asure cycle*1	N _{PEC}	1000		—	Times	
Data hold time	After 1000 times of N _{PEC}	t _{DRP}	20* ^{2, *3}		—	Year	T _a = +85°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing.

Table 5.49 ROM (Flash Memory for Code Storage) Characteristics (2)

High-speed operating mode Conditions: 2.7 V \leq VCC \leq 3.6 V, 2.7 V \leq AVSS0 \leq 3.6 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: T_a = -40 to +105°C

Item		Symbol	FCLK = 1 MHz			FCLK	Linit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	4-byte	t _{P4}	_	103	931	_	52	489	μs
Erasure time	1-Kbyte	t _{E1K}	_	8.23	267	_	5.48	214	ms
	256-Kbyte	t _{E256K}		407	925		39	457	ms
Blank check time	4-byte	t _{BC4}		_	48		—	15.9	μs
	1-Kbyte	t _{BC1K}		_	1.58		—	0.127	ms
Erase operation forcible stop time		t _{SED}		_	21.6		—	12.8	μs
Start-up area switching setting time		t _{SAS}	-	12.6	543	-	6.16	432	ms
Access window time		t _{AWS}		12.6	543		6.16	432	ms
ROM mode transition wai	t _{DIS}	2		—	2	_		μs	
ROM mode transition wai	t _{MS}	5		—	5	_		μs	

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software. Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Boy Data		Description						
Rev.	Date	Page	Summary					
1.20	Sep 29, 2014	85	Figure 5.41 RSPI Clock Timing and Simple SPI Clock Timing, Figure 5.42 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 1) changed					
		86	Figure 5.43 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Divided by 2) added, Figure 5.44 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0) changed					
		87 Figure 5.45 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2) a Figure 5.46 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH =						
		88 Figure 5.47 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, C						
		89	Table 5.37 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics) and Figure 5.49 USB0_DP and USB0_DM Output Timing, changed					
		90	Figure 5.50 Test Circuit, changed					
		91	Table 5.38 A/D Conversion Characteristics (1), Figure 5.51 AVCC0 to AVREFH0 Voltage Range, changed					
		92	Table 5.39 A/D Conversion Characteristics (2), Table 5.40 A/D Conversion Characteristics (3) changed					
		101	Table 5.49 ROM (Flash Memory for Code Storage) Characteristics (2) and Table 5.50 ROM (Flash Memory for Code Storage) Characteristics (3), changed					
		102	Table 5.52 E2 DataFlash Characteristics (2), Table 5.53 E2 DataFlash Characteristics (3) changed					
1.21	Dec 09, 2014	1. Overvie	w					
		2 to 4	Table 1.1 Outline of Specifications Unique ID, changed					
		5. Electrica	al Characteristics					
		51	Table 5.3 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed					
		61	Table 5.19 Output Voltage (1) and Table 5.20 Output Voltage (2), changed					
		102	Table 5.52 E2 DataFlash Characteristics (2): high-speed operating mode and Table 5.53 E2 DataFlash Characteristics (3): middle-speed operating mode, changed					

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.