

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51113adfm-3a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.4	Pin Functions (3/3)

Classifications	Pin Name	I/O	Description
USB 2.0 host/	USB0_DP	I/O	D+ I/O pin of the USB on-chip transceiver.
function module	USB0_DM	I/O	D- I/O pin of the USB on-chip transceiver.
	USB0_VBUS	Input	USB cable connection monitor pin.
	USB0_EXICEN	Output	Low-power control signal for the OTG chip.
	USB0_VBUSEN	Output	VBUS (5 V) supply enable signal for the OTG chip.
	USB0_OVRCURA, USB0_OVRCURB	Input	External overcurrent detection pins.
	USB0_ID	Input	Mini-AB connector ID input pin during operation in OTG mode.
12-bit A/D converter	AN000 to AN004, AN006, AN008 to AN015	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0#	Input	Input pin for the external trigger signals that start the A/D conversion.
D/A converter	DA0, DA1	Output	Output pins for the analog signals to be processed by the D/A converted
I/O ports	P03, P05	I/O	2-bit input/output pins.
	P14 to P17	I/O	4-bit input/output pins.
	P26, P27	I/O	2-bit input/output pins.
	P30 to P32, P35	I/O	4-bit input/output pins (P35 input pin).
	P40 to P44, P46	I/O	6-bit input/output pins.
	P54, P55	I/O	2-bit input/output pins.
	PA0, PA1, PA3, PA4, PA6	I/O	5-bit input/output pins.
	PB0, PB1, PB3, PB5 to PB7	I/O	6-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH7	Input	1-bit input pin.
	PJ6, PJ7	I/O	2-bit input/output pins.

Note 1. For external clock input.

Table 1.6	List of Pins and Pin Functions (64-Pin WFLGA) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCle, SClf, RSPI, RIIC, USB)	Others
A1	AVSS0		- · · ·	· · · ·	
A2	AVCC0				
A3	VREFH0	PJ6*2			
A4	VREFL0	PJ7* ²			
A5		P43* ²			AN003
A6		P46*2			AN006
A7		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
A8		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
B1	XCOUT				
B2		P03			DA0
B3		P40* ²			AN000
B4		P42* ²			AN002
B5		P44* ²			AN004
B6		PE6			IRQ6/AN014
B7		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
B8		PE4	MTIOC1A/MTIOC3A/ MTIOC4D	MOSIA	IRQ4/AN012
C1	XCIN	PH7			
C2		P05			DA1
C3		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/CACREF ADTRG0#
C4		P41* ²			AN001
C5		PE7			IRQ7/AN015
C6		PE5	MTIOC2B/MTIOC4C		IRQ5/AN013
C7		PA1	MTIOC0B/MTCLKC/ RTCOUT	SCK5/SSLA2	
C8		PA0	MTIOC4A	SSLA1	CACREF
D1	RES#				
D2		P30	MTIOC4B/POE8#	RXD1/SMISO1/SSCL1	IRQ0
D3		P26	MTIOC2A	TXD1/SMOSI1/SSDA1/ USB0_VBUSEN	
D4		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
D5		PA6	MTIC5V/MTIOC2A/MTCLKB/ POE2#	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
D6		PA4	MTIC5U/MTIOC2B/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
D7		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
D8	VSS				
E1	XTAL				
E2	MD				FINED
E3		P31	MTIOC4D	CTS1#/RTS1#/SS1#	IRQ1
E4		P55	MTIOC4D		
E5		PB3	MTIOC0A/MTIOC3B/ MTIOC4A/POE3#	USB0_OVRCURA	
E6		PB1	MTIOC0C/MTIOC4C		IRQ4
E7		PB0	MTIC5W/MTIOC0C/ RTCOUT	SCL0/RSPCKA	IRQ2/ADTRG0#
E8	VCC				
F1	EXTAL				

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
F2		P32	MTIOC0C/RTCOUT		IRQ2
F3	UPSEL	P35			NMI
F4	UB#	P14	MTIOC0A/MTIOC3A/ MTCLKA		
F5		P54	MTIOC4B		
F6		PC7	MTIOC3A/MTCLKB	TXD1/SMOSI1/SSDA1/MISOA/ USB0_OVRCURB	CACREF
F7		PC4	MTCLKC/MTIOC3D/POE0#	SCK5/SSLA0/USB0_VBUSEN/ USB0_VBUS*1	IRQ2/CLKOUT
F8		PB5	MTIOC1B/MTIOC2A/POE1#		
G1	VCL				
G2		P17	MTIOC0C/MTIOC3A/ MTIOC3B/POE8#	SCK1/MISOA/SDA0/RXD12/ RXDX12/SMISO12/SSCL12	IRQ7
G3		P16	MTIOC3C/MTIOC3D/ RTCOUT	TXD1/SMOSI1/SSDA1/SCL0/ MOSIA/USB0_VBUSEN/ USB0_OVRCURB/USB0_VBUS	IRQ6/ADTRG0#
G4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
G5		PC6	MTIOC3C/MTCLKA	RXD1/SMISO1/SSCL1/MOSIA/ USB0_EXICEN	
G6		PC5	MTIOC3B/MTCLKD	SCK1/RSPCKA/USB0_ID	
G7		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	
G8		PB6/PC0	MTIOC3D		
H1	VSS				
H2	VCC				
H3	VCC_USB				
H4				USB0_DM	
H5				USB0_DP	
H6	VSS_USB				
H7		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	
H8		PB7/PC1	MTIOC3B		

 Table 1.6
 List of Pins and Pin Functions (64-Pin WFLGA) (2/2)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to I/O registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

While writing to an I/O register, the CPU starts executing subsequent instructions before the I/O register write access is completed. This may cause the subsequent instructions to be executed before the write value is reflected in the operation. The examples below show how subsequent instructions must be executed after a write access to an I/O register is completed.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) set to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value in the I/O register and write it to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

Example of instructions

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

Table 4.1	List of I/O Registers (Address Order) (9/16)
-----------	--

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Acces States
0008 88A2h	MTU5	Timer General Register W	TGRW	16	16	2 or 3 PCLKB
0008 88A4h	MTU5	Timer Control Register W	TCRW	8	8	2 or 3 PCLKB
0008 88A6h	MTU5	Timer I/O Control Register W	TIORW	8	8	2 or 3 PCLKB
0008 88B2h	MTU5	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 88B4h	MTU5	Timer Start Register	TSTR	8	8	2 or 3 PCLKB
0008 88B6h	MTU5	Timer Compare Match Clear Register	TCNTCMPCLR	8	8	2 or 3 PCLKB
0008 8900h	POE	Input Level Control/Status Register 1	ICSR1	16	8, 16	2 or 3 PCLKB
0008 8902h	POE	Output Level Control/Status Register 1	OCSR1	16	8, 16	2 or 3 PCLKB
0008 8908h	POE	Input Level Control/Status Register 2	ICSR2	16	8, 16	2 or 3 PCLKB
0008 890Ah	POE	Software Port Output Enable Register	SPOER	8	8	2 or 3 PCLKB
0008 890Bh	POE	Port Output Enable Control Register 1	POECR1	8	8	2 or 3 PCLKB
0008 890Ch	POE	Port Output Enable Control Register 2	POECR2	8	8	2 or 3 PCLKB
0008 890Eh	POE	Input Level Control/Status Register 3	ICSR3	16	8, 16	2 or 3 PCLKB
0008 9000h	S12AD	A/D Control Register	ADCSR	16	16	2 or 3 PCLKB
008 9004h	S12AD	A/D Channel Select Register A	ADANSA	16	16	2 or 3 PCLKB
008 9008h	S12AD	A/D-Converted Value Addition Mode Select Register	ADADS	16	16	2 or 3 PCLKB
008 900Ch	S12AD	A/D-Converted Value Addition Count Select Register	ADADC	8	8	2 or 3 PCLKB
008 900Eh	S12AD	A/D Control Extended Register	ADCER	16	16	2 or 3 PCLKB
008 9010h	S12AD	A/D Start Trigger Select Register	ADSTRGR	16	16	2 or 3 PCLKB
008 9012h	S12AD	A/D Converted Extended Input Control Register	ADEXICR	16	16	2 or 3 PCLKB
008 9014h	S12AD	A/D Channel Select Register B	ADANSB	16	16	2 or 3 PCLKB
008 9018h	S12AD	A/D Data Duplication Register	ADDBLDR	16	16	2 or 3 PCLKB
008 901Ah	S12AD	A/D Temperature Sensor Data Register	ADTSDR	16	16	2 or 3 PCLKB
		•				
008 901Ch	S12AD	A/D Internal Reference Voltage Data Register	ADOCDR	16	16	2 or 3 PCLKB
008 9020h	S12AD	A/D Data Register 0	ADDR0	16	16	2 or 3 PCLKB
008 9022h	S12AD	A/D Data Register 1	ADDR1	16	16	2 or 3 PCLKB
008 9024h	S12AD	A/D Data Register 2	ADDR2	16	16	2 or 3 PCLKB
008 9026h	S12AD	A/D Data Register 3	ADDR3	16	16	2 or 3 PCLKB
008 9028h	S12AD	A/D Data Register 4	ADDR4	16	16	2 or 3 PCLKB
008 902Ch	S12AD	A/D Data Register 6	ADDR6	16	16	2 or 3 PCLKB
008 9030h	S12AD	A/D Data Register 8	ADDR8	16	16	2 or 3 PCLKB
008 9032h	S12AD	A/D Data Register 9	ADDR9	16	16	2 or 3 PCLKB
008 9034h	S12AD	A/D Data Register 10	ADDR10	16	16	2 or 3 PCLKB
008 9036h	S12AD	A/D Data Register 11	ADDR11	16	16	2 or 3 PCLKB
008 9038h	S12AD	A/D Data Register 12	ADDR12	16	16	2 or 3 PCLKB
008 903Ah	S12AD	A/D Data Register 13	ADDR13	16	16	2 or 3 PCLKB
008 903Ch	S12AD	A/D Data Register 14	ADDR14	16	16	2 or 3 PCLKB
008 903Eh	S12AD	A/D Data Register 15	ADDR15	16	16	2 or 3 PCLKB
008 9060h	S12AD	A/D Sampling State Register 0	ADSSTR0	8	8	2 or 3 PCLKB
008 9061h	S12AD	A/D Sampling State Register L	ADSSTRL	8	8	2 or 3 PCLKB
008 9070h	S12AD	A/D Sampling State Register T	ADSSTRT	8	8	2 or 3 PCLKB
008 9071h	S12AD	A/D Sampling State Register O	ADSSTRO	8	8	2 or 3 PCLKB
008 9073h	S12AD	A/D Sampling State Register 1	ADSSTR1	8	8	2 or 3 PCLKB
008 9074h	S12AD	A/D Sampling State Register 2	ADSSTR2	8	8	2 or 3 PCLKB
008 9075h	S12AD	A/D Sampling State Register 3	ADSSTR3	8	8	2 or 3 PCLKB
008 9076h	S12AD	A/D Sampling State Register 4	ADSSTR4	8	8	2 or 3 PCLKB
	S12AD	A/D Sampling State Register 6	ADSSTR6	8	8	2 or 3 PCLKB
008 9078h		Serial Mode Register	SMR	8	8	2 or 3 PCLKB
	SCI1			-	-	
008 A020h	SCI1 SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCI KR
008 A020h 008 A021h	SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
008 A020h		Bit Rate Register Serial Control Register Transmit Data Register	BRR SCR TDR	8 8 8	8 8 8	2 or 3 PCLKB 2 or 3 PCLKB 2 or 3 PCLKB

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
000A 0098h	USB0	PIPE3 Transaction Counter Enable Register	PIPE3TRE	16	16	9 PCLKB or more
000A 009Ah	USB0	PIPE3 Transaction Counter Register	PIPE3TRN	16	16	9 PCLKB or more
000A 009Ch	USB0	PIPE4 Transaction Counter Enable Register	PIPE4TRE	16	16	9 PCLKB or more
000A 009Eh	USB0	PIPE4 Transaction Counter Register	PIPE4TRN	16	16	9 PCLKB or more
000A 00A0h	USB0	PIPE5 Transaction Counter Enable Register	PIPE5TRE	16	16	9 PCLKB or more
000A 00A2h	USB0	PIPE5 Transaction Counter Register	PIPE5TRN	16	16	9 PCLKB or more
000A 00B0h	USB0	BC Control Register 0	USBBCCTRL0	16	16	9 PCLKB or more
000A 00CCh	USB0	USB Module Control Register	USBMC	16	16	9 PCLKB or more
000A 00D0h	USB0	Device Address 0 Configuration Register	DEVADD0	16	16	9 PCLKB or more
000A 00D2h	USB0	Device Address 1 Configuration Register	DEVADD1	16	16	9 PCLKB or more
000A 00D4h	USB0	Device Address 2 Configuration Register	DEVADD2	16	16	9 PCLKB or more
000A 00D6h	USB0	Device Address 3 Configuration Register	DEVADD3	16	16	9 PCLKB or more
000A 00D8h	USB0	Device Address 4 Configuration Register	DEVADD4	16	16	9 PCLKB or more
000A 00DAh	USB0	Device Address 5 Configuration Register	DEVADD5	16	16	9 PCLKB or more
007F C090h	FLASH	E2 DataFlash Control Register	DFLCTL	8	8	2 or 3 FCLK
007F C0ACh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRL	8	8	1 or 2 PCLKB
007F C0ADh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRH	8	8	1 or 2 PCLKB
07F C0B0h	FLASH	Flash Start-Up Setting Monitor Register	FSCMR	16	16	2 or 3 FCLK
07F C0B2h	FLASH	Flash Access Window Start Address Monitor	FAWSMR	16	16	2 or 3 FCLK
007F C0B4h	FLASH	Flash Access Window End Address Monitor Register	FAWEMR	16	16	2 or 3 FCLK
007F C0B6h	FLASH	Flash Initial Setting Register	FISR	8	8	2 or 3 FCLK
007F C0B7h	FLASH	Flash Extra Area Control Register	FEXCR	8	8	2 or 3 FCLK
007F C0B8h	FLASH	Flash Error Address Monitor Register L	FEAML	16	16	2 or 3 FCLK
007F C0BAh	FLASH	Flash Error Address Monitor Register H	FEAMH	8	8	2 or 3 FCLK
007F C0C0h	FLASH	Protection Unlock Register	FPR	8	8	2 or 3 FCLK
007F C0C1h	FLASH	Protection Unlock Status Register	FPSR	8	8	2 or 3 FCLK
007F C0C2h	FLASH	Flash Read Buffer Register L	FRBL	16	16	2 or 3 FCLK
007F C0C4h	FLASH	Flash Read Buffer Register H	FRBH	16	16	2 or 3 FCLK
007F FF80h	FLASH	Flash P/E Mode Control Register	FPMCR	8	8	2 or 3 FCLK
007F FF81h	FLASH	Flash Area Select Register	FASR	8	8	2 or 3 FCLK
007F FF82h	FLASH	Flash Processing Start Address Register L	FSARL	16	16	2 or 3 FCLK
007F FF84h	FLASH	Flash Processing Start Address Register H	FSARH	8	8	2 or 3 FCLK
007F FF85h	FLASH	Flash Control Register	FCR	8	8	2 or 3 FCLK
07F FF86h	FLASH	Flash Processing End Address Register L	FEARL	16	16	2 or 3 FCLK
07F FF88h	FLASH	Flash Processing End Address Register H	FEARH	8	8	2 or 3 FCLK
07F FF89h	FLASH	Flash Reset Register	FRESETR	8	8	2 or 3 FCLK
07F FF8Ah	FLASH	Flash Status Register 0	FSTATR0	8	8	2 or 3 FCLK
07F FF8Bh	FLASH	Flash Status Register 1	FSTATR1	8	8	2 or 3 FCLK
007F FF8Ch	FLASH	Flash Write Buffer Register L	FWBL	16	16	2 or 3 FCLK
007F FF8Eh	FLASH	Flash Write Buffer Register H	FWBH	16	16	2 or 3 FCLK
07F FFB2h	FLASH	Flash P/E Mode Entry Register	FENTRYR	16	16	2 or 3 FCLK

Table 4.1 List of I/O Registers (Address Order) (16/16)

Note 1. Odd addresses cannot be accessed in 16-bit units. When accessing a register in 16-bit units, access the address of the TMOCNTL register. Table 27.6 lists register allocation for 16-bit access in the User's Manual: Hardware.

Table 5.4DC Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} < 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports P16, P17, port PA6, port PB0 (5 V tolerant)	V _{IH}	VCC × 0.8	—	5.8	V	
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	All pins		-0.3	—	VCC × 0.2		
	All pins	ΔV_T	VCC × 0.01	_	—		
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8	_	VCC + 0.3	-	
	Ports P40 to P44, P46, ports PJ6, PJ7	-	AVCC0 × 0.7	—	AVCC0 + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)	1	-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		

Table 5.5DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item			Тур.	Max.	Unit	Test Conditions
Input leakage current	RES#, MD, port P35, port PH7	I _{in}		—	1.0	μA	V _{in} = 0 V, VCC
Three-state	Ports for 5 V tolerant	I _{TSI}		—	1.0	μA	V _{in} = 0 V, 5.8 V
leakage current (off-state)	Pins other than above		_	—	1.0		V _{in} = 0 V, VCC
Input capacitance	All input pins (except for port P16, port P35, USB0_DM, USB0_DP)	C _{in}	_	_	15	pF	V _{in} = 0 mV, Frequency: 1 MHz, T _a = 25°C
	Port P16, port P35, USB0_DM, USB0_DP			—	30		

Table 5.6DC Characteristics (4)

```
Conditions: 1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}
```

Item			Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for port P35, port PH7)	R _U	10	20	100	kΩ	V _{in} = 0 V

Table 5.17 Permissible Output Currents (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +85^{\circ}\text{C} \text{ (D version)}$

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OL}	0.4	mA
(average value per pin)	Ports other than above	-	8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	-	0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣI_{OL}	2.4	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		30	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7		30	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7	-	30	
	Total of all output pins	-	60	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{ОН}	-0.1	
(average value per pin)	Ports other than above	-	-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	-	-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣΙ _{ΟΗ}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7	-	-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7	Ī	-15	
	Total of all output pins		-40	

Note: Do not exceed the permissible total supply current.

Table 5.18 Permissible Output Currents (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C} \text{ (G version)}$

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OL}	0.4	mA
(average value per pin)	Ports other than above	-	8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣI_{OL}	1.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		20	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7		20	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7	-	20	
	Total of all output pins	-	40	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OH}	-0.1	
(average value per pin)	Ports other than above	-	-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	-	-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OH}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7		-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		-15	
	Total of all output pins		-40	

Note: Do not exceed the permissible total supply current.

5.2.3 Standard I/O Pin Output Characteristics (3)

Figure 5.19 to Figure 5.22 show the characteristics of ports P40 to P44, P46, ports PJ6, PJ7.

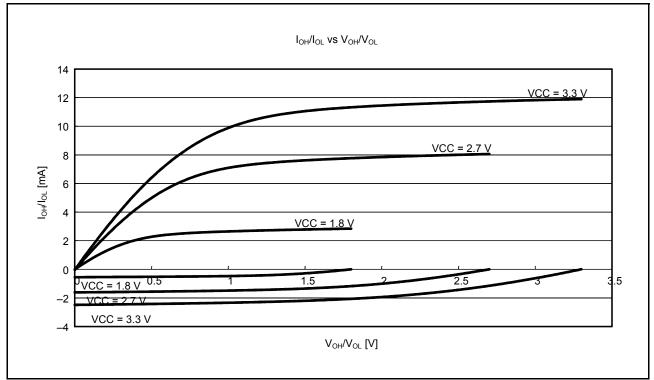


Figure 5.19 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at $T_a = 25^{\circ}C$ (Reference Data)

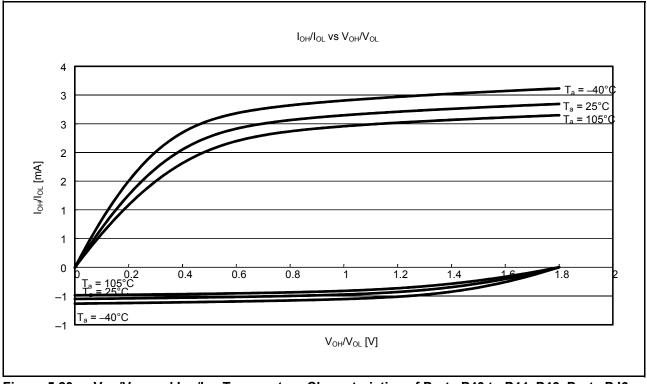


Figure 5.20 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 1.8 V (Reference Data)

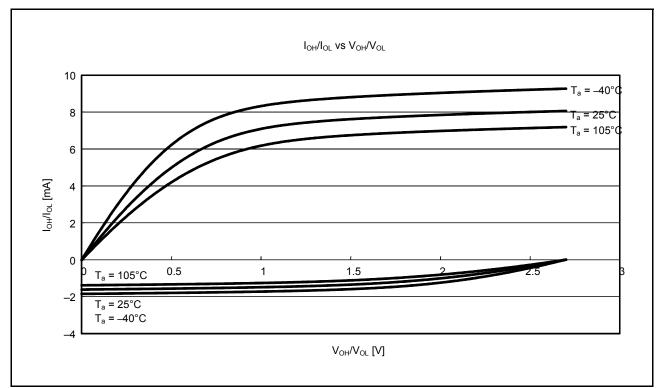


Figure 5.21 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 2.7 V (Reference Data)

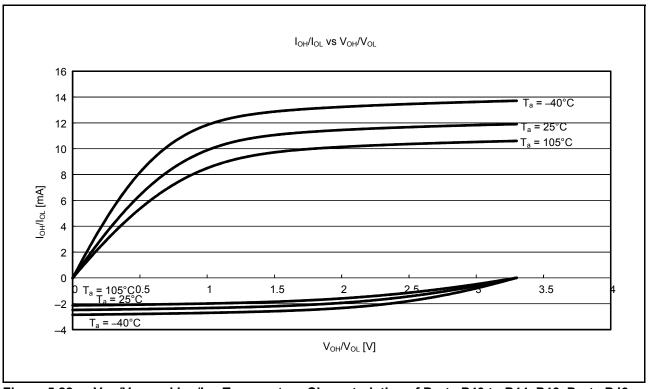


Figure 5.22 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 3.3 V (Reference Data)

RENESAS

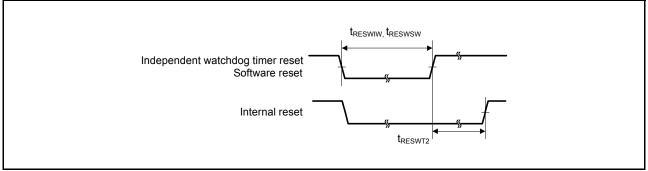


Figure 5.33 Reset Input Timing (2)

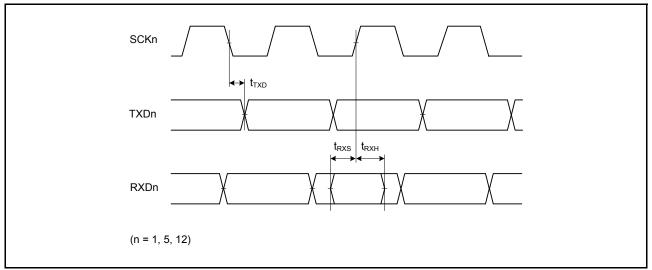


Figure 5.43 SCI Input/Output Timing: Clock Synchronous Mode

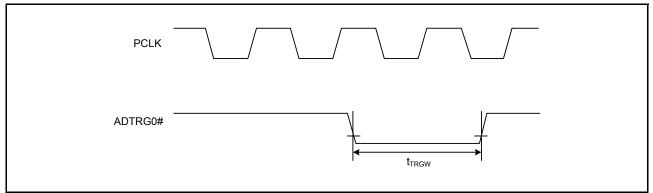


Figure 5.44 A/D Converter External Trigger Input Timing

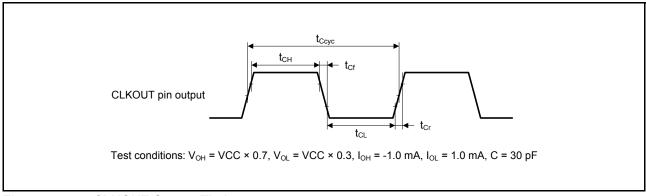
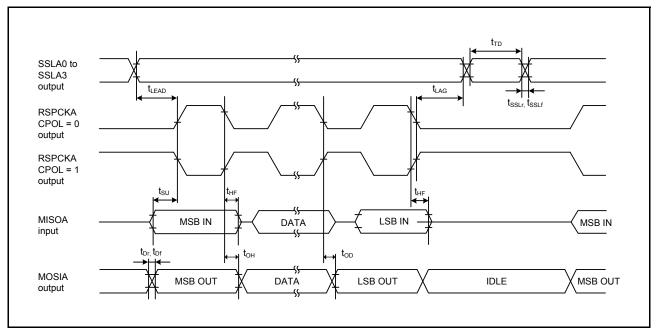
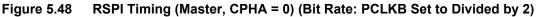




Figure 5.45 CLKOUT Output Timing

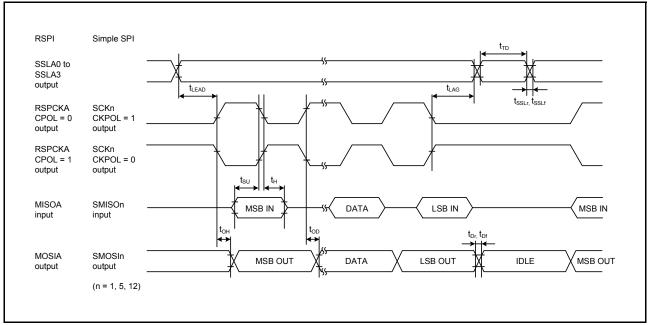
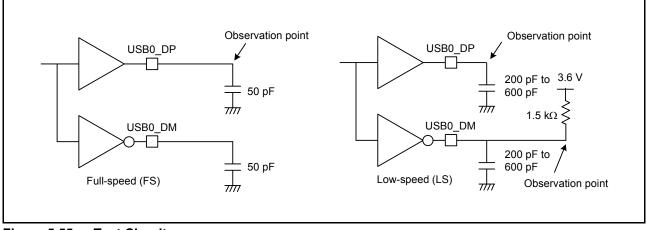



Figure 5.49 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0)

5.8 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 5.58, Figure 5.59
	Voltage detection	V _{det1_4}	3.00	3.10	3.20	V	Figure 5.60
	circuit (LVD1)*1	V _{det1_5}	2.91	3.00	3.09		At falling edge VCC
		V _{det1_6}	2.81	2.90	2.99		
		V _{det1_7}	2.70	2.79	2.88		
		V _{det1_8}	2.60	2.68	2.76		
		V _{det1_9}	2.50	2.58	2.66		
		V _{det1_A}	2.40	2.48	2.56		
		V _{det1_B}	1.99	2.06	2.13		
		V _{det1_C}	1.90	1.96	2.02		
		V _{det1_D}	1.80	1.86	1.92		

Table 5.45 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 5.46 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Voltage detection level	Voltage detection circuit	V _{det2_0}	2.71	2.90	3.09	V	Figure 5.61	
	(LVD2)*1	V _{det2_1}	2.43	2.60	2.77		At falling edge VCC	
		V _{det2_2}	1.87 2.00 2.13					
		V _{det2_3} *2	1.69	1.80	1.91			
Wait time after power-on	At normal startup*3	t _{POR}	_	9.1	—	ms	Figure 5.59	
reset cancellation	During fast startup time*4	t _{POR}	_	1.6	—			
Wait time after voltage monitoring 1 reset	Power-on voltage monitoring 1 reset disabled* ³	t _{LVD1}	_	568	—	μs	Figure 5.60	
cancellation	Power-on voltage monitoring 1 reset enabled* ⁴		_	100	—			
Wait time after voltage mo	nitoring 2 reset cancellation	t _{LVD2}		100	—	μs	Figure 5.61	
Response delay time		t _{det}	_	—	350	μs	Figure 5.58	
Minimum VCC down time*	5	t _{VOFF}	350	—	—	μs	Figure 5.58, VCC = 1.0 V or above	
Power-on reset enable time		t _{W(POR)}	1	—	—	ms	Figure 5.59, VCC = below 1.0 V	
LVD operation stabilization	n time (after LVD is enabled)	Td _(E-A)	_	—	300	μs	Figure 5.60, Figure 5.61	
Hysteresis width (LVD1 and LVD2)		V _{LVH}	_	70	—	mV	Vdet1_4 selected	
		_	60	—		Vdet1_5 to 9, LVD2 selected		
			_	50	—		When selection is from among Vdet1_A to B.	
			—	40	—		When selection is from among Vdet1_C to D.	

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.

Note 2. Vdet2_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.

Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 4. When OFS1.(STUPLVD1REN, FASTSTUP) ≠ 11b.

Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

5.11 E2 DataFlash Characteristics

Table 5.51 E2 DataFlash Characteristics (1)

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	_	Times	
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	—		Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	—		Year	
	After 1000000 times of N _{DPEC}		_	1* ^{2, *3}	_	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in 1-byte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

programming the same address for several times as one erasing is not enabled (overwriting is prohibited). Note 2. Characteristics when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 5.52 E2 DataFlash Characteristics (2) : high-speed operating mode

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$

Temperature range for the programming/erasure operation: $T_a = -40$ to $+105^{\circ}C$

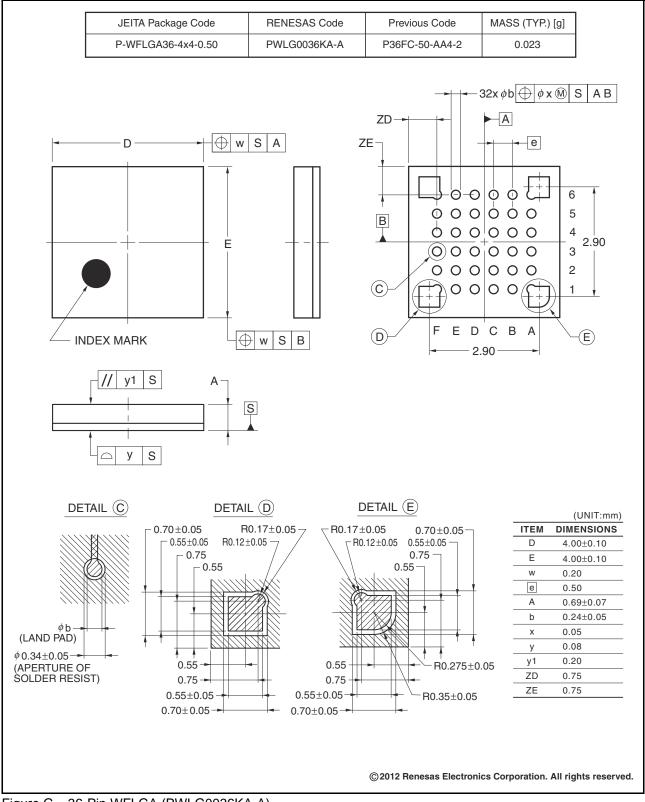
Item		Symbol	FCL	K = 1 MHz		FCL	Unit		
iten	1	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1-byte	t _{DP1}	_	86	761	_	40.5	374	μs
Erasure time	1-Kbyte	t _{DE1K}	_	17.4	456	—	6.15	228	ms
	8-Kbyte	t _{DE8K}	_	60.4	499	—	9.3	231	ms
Blank check time	1-byte	t _{DBC1}	_	_	48	—	—	15.9	μs
	1-Kbyte	t _{DBC1K}	_	_	1.58	—	—	0.127	μs
Erase operation forcibl	e stop time	t _{DSED}	_	_	21.5	—	—	12.8	μs
DataFlash STOP recov	DataFlash STOP recovery time		5	—	—	5	—	—	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
 The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Table 5.53E2 DataFlash Characteristics (3): middle-speed operating mode

Conditions: $1.8 V \le VCC \le 3.6 V$, $1.8 V \le AVSS0 \le 3.6 V$, $VSS = AVSS0 = VSS_USB = 0 V$


Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FCL	K = 1 MHz		FCL	Unit		
liem		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1-byte	t _{DP1}	—	126	1160	—	85.4	818	μs
Erasure time	1-Kbyte	t _{DE1K}	—	17.5	457	—	7.76	259	ms
	8-Kbyte	t _{DE8K}	—	60.5	500	_	16.7	267.6	ms
Blank check time	1-byte	t _{DBC1}	—	_	78	_	—	50	μs
	1-Kbyte	t _{DBC1K}	—	_	1.61	_	—	0.369	ms
Erase operation forcible	stop time	t _{DSED}	—		33.5	—	_	25.5	μs
DataFlash STOP recover	ery time	t _{DSTOP}	720		_	720	_	_	ns

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software. Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

REVISION HISTORY

RX111 Group Datasheet

_	_		Description
Rev.	Date	Page	Summary
0.60	Apr 15, 2013		First edition, issued
0.90	May 15, 2013	Features	
		1	Changed
		1. Overviev	
		2 to 4	Table 1.1 Outline of Specifications changed
		10 to 12	Table 1.4 Pin Functions changed
		13	Figure 1.3 Pin Assignments of the 64-Pin LQFP changed
		14	Figure 1.4 Pin Assignments of the 64-Pin WFLGA changed
		15	Figure 1.5 Pin Assignments of the 48-Pin LQFP/HWQFN changed
		18, 19	Table 1.5 List of Pins and Pin Functions (64-Pin LQFP) changed, Note 1 added
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed, Note 1 added
		22, 23	Table 1.7 List of Pins and Pin Functions (48-Pin LQFP/HWQFN) changed, Note 1 added
		24, 25	Table 1.8 List of Pins and Pin Functions (40-Pin HWQFN) changed, Note 1 added
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed, Note 1 added
		4. I/O Regi	
		33 to 48	Table 5.1 List of I/O Registers (Address Order) changed
1.00	Jun 19. 2013	1. Overviev	
		9	Figure 1.2 Block Diagram changed
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed
		4. I/O Regi	
		33 to 48	Table 4.1 List of I/O Registers (Address Order) changed
			al Characteristics
		49 to 99	Added
1.20	Sep 29, 2014	1. Overviev	
1.20	000 20, 2011	2 to 4	Table 1.1 Outline of Specifications: ROM capacity and RAM capacity changed, Unique ID added
		6, 7	Table 1.3 List of Products, changed
		8	Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type, changed
		9	Figure 1.2 Block Diagram changed
		10	Table 1.4 Pin Functions changed
		15	Figure 1.5 Pin Assignments of the 48-Pin LFQFP/HWQFN: Note added
		16	Figure 1.6 Pin Assignments of the 40-Pin HWQFN: Note added
		3. Address	
		30	Figure 3.1 Memory Map, changed
		4. I/O Regi	
		33 to 48	Table 4.1 List of I/O Registers (Address Order), changed
			al Characteristics
		49	Table 5.1 Absolute Maximum Ratings, Table 5.2 Recommended Operating Conditions, changed
		50	Table 5.3 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed
		50	Table 5.5 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed
		55, 56	Table 5.8 DC Characteristics (6), added
		56	Table 5.9 DC Characteristics (0), added
			Table 5.10 DC Characteristics (8), added
		58 59	Table 5.13 DC Characteristics (0), added
			Table 5.19 Output Values of Voltage (1) and Table 5.20 Output Values of Voltage (2), changed
		61	Table 5.22 Operation Frequency Value (Middle-Speed Operating Mode) changed,
		68	Note 4 added
		69	Table 5.24 Clock Timing, changed
		78	Table 5.32 Timing of On-Chip Peripheral Modules (1) changed
		81	Table 5.35 Timing of On-Chip Peripheral Modules (4), changed
		01	
		82	
			Table 5.36 Timing of On-Chip Peripheral Modules (5): Note 2 deleted Figure 5.37 SCK Clock Input Timing changed

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.