

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, SCI, SPI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51113adne-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Products

Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Group	Part No.	Orderable Part No.	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Maximum Operating Frequency	Operating Temperature	
RX111	R5F51118AGFM	R5F51118AGFM#3A	PLQP0064KB-A						
	R5F51118AGFK	R5F51118AGFK#3A	PLQP0064GA-A	E10 Khutoo					
	R5F51118AGFL	R5F51118AGFL#3A	PLQP0048KB-A	512 KDytes					
	R5F51118AGNE	R5F51118AGNE#UA	PWQN0048KB-A		C4 Khutaa				
	R5F51117AGFM	R5F51117AGFM#3A	PLQP0064KB-A		64 KDytes				
	R5F51117AGFK	R5F51117AGFK#3A	PLQP0064GA-A	284 Khytos					
	R5F51117AGFL	R5F51117AGFL#3A	PLQP0048KB-A	304 KDytes					
	R5F51117AGNE	R5F51117AGNE#UA	PWQN0048KB-A						
	R5F51116AGFM	R5F51116AGFM#3A	PLQP0064KB-A						
	R5F51116AGFK	R5F51116AGFK#3A	PLQP0064GA-A	256 Khyton	22 Khutaa				
	R5F51116AGFL	R5F51116AGFL#3A	PLQP0048KB-A	200 NDytes	/tes 32 Kbytes				
	R5F51116AGNE	R5F51116AGNE#UA	PWQN0048KB-A						
	R5F51115AGFM	R5F51115AGFM#3A	PLQP0064KB-A						
	R5F51115AGFK	R5F51115AGFK#3A	PLQP0064GA-A	129 Khytos					
	R5F51115AGFL	R5F51115AGFL#3A	PLQP0048KB-A	120 Kbytes					
	R5F51115AGNE	R5F51115AGNE#UA	PWQN0048KB-A		16 Khytos				
	R5F51114AGFM	R5F51114AGFM#3A	PLQP0064KB-A		10 10 9003				
	R5F51114AGFK	R5F51114AGFK#3A	PLQP0064GA-A	96 Khytes		8 Kbytes	32 MHz	-40 to +105°C	
	R5F51114AGFL	R5F51114AGFL#3A	PLQP0048KB-A	30 hbytes					
	R5F51114AGNE	R5F51114AGNE#UA	PWQN0048KB-A						
	R5F51113AGFM	R5F51113AGFM#3A	PLQP0064KB-A						
	R5F51113AGFK	R5F51113AGFK#3A	PLQP0064GA-A						
	R5F51113AGFL	R5F51113AGFL#3A	PLQP0048KB-A	64 Kbytes					
	R5F51113AGNE	R5F51113AGNE#UA	PWQN0048KB-A						
	R5F51113AGNF	R5F51113AGNF#UA	PWQN0040KC-A		10 Khytes				
	R5F51111AGFM	R5F51111AGFM#3A	PLQP0064KB-A		TO Royles				
	R5F51111AGFK	R5F51111AGFK#3A	PLQP0064GA-A						
	R5F51111AGFL	R5F51111AGFL#3A	PLQP0048KB-A	32 Kbytes					
	R5F51111AGNE	R5F51111AGNE#UA	PWQN0048KB-A						
	R5F51111AGNF	R5F51111AGNF#UA	PWQN0040KC-A						
	R5F5111JAGFM	R5F5111JAGFM#3A	PLQP0064KB-A						
	R5F5111JAGFK	R5F5111JAGFK#3A	PLQP0064GA-A						
	R5F5111JAGFL	R5F5111JAGFL#3A	PLQP0048KB-A	16 Kbytes	8 Kbytes	s 8 Kbytes			
	R5F5111JAGNE	R5F5111JAGNE#UA	PWQN0048KB-A						
	R5F5111JAGNF	R5F5111JAGNF#UA	PWQN0040KC-A						

Table 1.3List of Products (1/2)

Figure 1.6 Pin Assignments of the 40-Pin HWQFN

	Power Supply,		-	O	
Pin No.	Clock, System Control	I/O Port	(MTU, POE, RTC)	(SCIe, SCIf, RSPI, RIIC, USB)	Others
F2		P32	MTIOC0C/RTCOUT		IRQ2
F3	UPSEL	P35			NMI
F4	UB#	P14	MTIOC0A/MTIOC3A/ MTCLKA	CTS1#/RTS1#/SS1#/TXD12/ TXDX12/SIOX12/SMOSI12/ SSDA12/SSLA0/USB0_OVRCURA	IRQ4
F5		P54	MTIOC4B		
F6		PC7	MTIOC3A/MTCLKB	TXD1/SMOSI1/SSDA1/MISOA/ USB0_OVRCURB	CACREF
F7		PC4	MTCLKC/MTIOC3D/POE0#	SCK5/SSLA0/USB0_VBUSEN/ USB0_VBUS*1	IRQ2/CLKOUT
F8		PB5	MTIOC1B/MTIOC2A/POE1#		
G1	VCL				
G2		P17	MTIOC0C/MTIOC3A/ MTIOC3B/POE8#	SCK1/MISOA/SDA0/RXD12/ RXDX12/SMISO12/SSCL12	IRQ7
G3		P16	MTIOC3C/MTIOC3D/ RTCOUT	TXD1/SMOSI1/SSDA1/SCL0/ MOSIA/USB0_VBUSEN/ USB0_OVRCURB/USB0_VBUS	IRQ6/ADTRG0#
G4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
G5		PC6	MTIOC3C/MTCLKA	RXD1/SMISO1/SSCL1/MOSIA/ USB0_EXICEN	
G6		PC5	MTIOC3B/MTCLKD	SCK1/RSPCKA/USB0_ID	
G7		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	
G8		PB6/PC0	MTIOC3D		
H1	VSS				
H2	VCC				
H3	VCC_USB				
H4				USB0_DM	
H5				USB0_DP	
H6	VSS_USB				
H7		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	
H8		PB7/PC1	MTIOC3B		

 Table 1.6
 List of Pins and Pin Functions (64-Pin WFLGA) (2/2)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

 Table 1.7
 List of Pins and Pin Functions (48-Pin LFQFP/HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
39		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
40		PE7			IRQ7/AN015
41		P46* ²			AN006
42		P42* ²			AN002
43		P41* ²			AN001
44	VREFL0	PJ7*2			
45		P40* ²			AN000
46	VREFH0	PJ6* ²			
47	AVSS0				
48	AVCC0				

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

3. Address Space

3.1 Address Space

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory map.

4.1 I/O Register Addresses (Address Order)

Table 4.1 List of I/O Registers (Address Order) (1/	1/16)
---	-------

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 0000h	SYSTEM	Mode Monitor Register	MDMONR	16	16	3 ICLK
0008 0008h	SYSTEM	System Control Register 1	SYSCR1	16	16	3 ICLK
0008 000Ch	SYSTEM	Standby Control Register	SBYCR	16	16	3 ICLK
0008 0010h	SYSTEM	Module Stop Control Register A	MSTPCRA	32	32	3 ICLK
0008 0014h	SYSTEM	Module Stop Control Register B	MSTPCRB	32	32	3 ICLK
0008 0018h	SYSTEM	Module Stop Control Register C	MSTPCRC	32	32	3 ICLK
0008 0020h	SYSTEM	System Clock Control Register	SCKCR	32	32	3 ICLK
0008 0026h	SYSTEM	System Clock Control Register 3	SCKCR3	16	16	3 ICLK
0008 0028h	SYSTEM	PLL Control Register	PLLCR	16	16	3 ICLK
0008 002Ah	SYSTEM	PLL Control Register 2	PLLCR2	8	8	3 ICLK
0008 0032h	SYSTEM	Main Clock Oscillator Control Register	MOSCCR	8	8	3 ICLK
0008 0033h	SYSTEM	Sub-Clock Oscillator Control Register	SOSCCR	8	8	3 ICLK
0008 0034h	SYSTEM	Low-Speed On-Chip Oscillator Control Register	LOCOCR	8	8	3 ICLK
0008 0035h	SYSTEM	IWDT-Dedicated On-Chip Oscillator Control Register	ILOCOCR	8	8	3 ICLK
0008 0036h	SYSTEM	High-Speed On-Chip Oscillator Control Register	HOCOCR	8	8	3 ICLK
0008 003Ch	SYSTEM	Oscillation Stabilization Flag Register	OSCOVFSR	8	8	3 ICLK
0008 003Eh	SYSTEM	CLKOUT Output Control Register	CKOCR	16	16	3 ICLK
0008 0040h	SYSTEM	Oscillation Stop Detection Control Register	OSTDCR	8	8	3 ICLK
0008 0041h	SYSTEM	Oscillation Stop Detection Status Register	OSTDSR	8	8	3 ICLK
0008 00A0h	SYSTEM	Operating Power Control Register	OPCCR	8	8	3 ICLK
0008 00A1h	SYSTEM	Sleep Mode Return Clock Source Switching Register	RSTCKCR	8	8	3 ICLK
0008 00A2h	SYSTEM	Main Clock Oscillator Wait Control Register	MOSCWTCR	8	8	3 ICLK
0008 00A5h	SYSTEM	High-Speed On-Chip Oscillator Wait Control Register	HOCOWTCR	8	8	3 ICLK
0008 00AAh	SYSTEM	Sub Operating Power Control Register	SOPCCR	8	8	3 ICLK
0008 00C0h	SYSTEM	Reset Status Register 2	RSTSR2	8	8	3 ICLK
0008 00C2h	SYSTEM	Software Reset Register	SWRR	16	16	3 ICLK
0008 00E0h	SYSTEM	Voltage Monitoring 1 Circuit Control Register 1	LVD1CR1	8	8	3 ICLK
0008 00E1h	SYSTEM	Voltage Monitoring 1 Circuit Status Register	LVD1SR	8	8	3 ICLK
0008 00E2h	SYSTEM	Voltage Monitoring 2 Circuit Control Register 1	LVD2CR1	8	8	3 ICLK
0008 00E3h	SYSTEM	Voltage Monitoring 2 Circuit Status Register	LVD2SR	8	8	3 ICLK
0008 03FEh	SYSTEM	Protect Register	PRCR	16	16	3 ICLK
0008 1300h	BSC	Bus Error Status Clear Register	BERCLR	8	8	2 ICLK
0008 1304h	BSC	Bus Error Monitoring Enable Register	BEREN	8	8	2 ICLK
0008 1308h	BSC	Bus Error Status Register 1	BERSR1	8	8	2 ICLK
0008 130Ah	BSC	Bus Error Status Register 2	BERSR2	16	16	2 ICLK
0008 1310h	BSC	Bus Priority Control Register	BUSPRI	16	16	2 ICLK
0008 2400h	DTC	DTC Control Register	DTCCR	8	8	2 ICLK
0008 2404h	DTC	DTC Vector Base Register	DTCVBR	32	32	2 ICLK
0008 2408h	DTC	DTC Address Mode Register	DTCADMOD	8	8	2 ICLK
0008 240Ch	DTC	DTC Module Start Register	DTCST	8	8	2 ICLK
0008 240Eh	DTC	DTC Status Register	DTCSTS	16	16	2 ICLK
0008 7010h	ICU	Interrupt Request Register 016	IR016	8	8	2 ICLK
0008 701Bh	ICU	Interrupt Request Register 027	IR027	8	8	2 ICLK
0008 701Ch	ICU	Interrupt Request Register 028	IR028	8	8	2 ICLK
0008 701Dh	ICU	Interrupt Request Register 029	IR029	8	8	2 ICLK
0008 7020h	ICU	Interrupt Request Register 032	IR032	8	8	2 ICLK
0008 7021h	ICU	Interrupt Request Register 033	IR033	8	8	2 ICLK
0008 7022h	ICU	Interrupt Request Register 034	IR034	8	8	2 ICLK
0008 7024h	ICU	Interrupt Request Register 036	IR036	8	8	2 ICLK
0008 7025h	ICU	Interrupt Request Register 037	IR037	8	8	2 ICLK

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 88A2h	MTU5	Timer General Register W	TGRW	16	16	2 or 3 PCLKB
0008 88A4h	MTU5	Timer Control Register W	TCRW	8	8	2 or 3 PCLKB
0008 88A6h	MTU5	Timer I/O Control Register W	TIORW	8	8	2 or 3 PCLKB
0008 88B2h	MTU5	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 88B4h	MTU5	Timer Start Register	TSTR	8	8	2 or 3 PCLKB
0008 88B6h	MTU5	Timer Compare Match Clear Register	TCNTCMPCLR	8	8	2 or 3 PCLKB
0008 8900h	POE	Input Level Control/Status Register 1	ICSR1	16	8, 16	2 or 3 PCLKB
0008 8902h	POE	Output Level Control/Status Register 1	OCSR1	16	8, 16	2 or 3 PCLKB
0008 8908h	POE	Input Level Control/Status Register 2	ICSR2	16	8, 16	2 or 3 PCLKB
0008 890Ah	POE	Software Port Output Enable Register	SPOER	8	8	2 or 3 PCLKB
0008 890Bh	POE	Port Output Enable Control Register 1	POECR1	8	8	2 or 3 PCLKB
0008 890Ch	POE	Port Output Enable Control Register 2	POECR2	8	8	2 or 3 PCLKB
0008 890Eh	POE	Input Level Control/Status Register 3	ICSR3	16	8, 16	2 or 3 PCLKB
0008 9000h	S12AD	A/D Control Register	ADCSR	16	16	2 or 3 PCLKB
0008 9004h	S12AD	A/D Channel Select Register A	ADANSA	16	16	2 or 3 PCLKB
0008 9008h	S12AD	A/D-Converted Value Addition Mode Select Register	ADADS	16	16	2 or 3 PCLKB
0008 900Ch	S12AD	A/D-Converted Value Addition Count Select Register	ADADC	8	8	2 or 3 PCLKB
0008 900Eh	S12AD	A/D Control Extended Register	ADCER	16	16	2 or 3 PCLKB
0008 9010h	S12AD	A/D Start Trigger Select Register	ADSTRGR	16	16	2 or 3 PCLKB
0008 9012h	S12AD	A/D Converted Extended Input Control Register	ADEXICR	16	16	2 or 3 PCLKB
0008 9014h	S12AD	A/D Channel Select Register B	ADANSB	16	16	2 or 3 PCLKB
0008 9018h	S12AD	A/D Data Duplication Register	ADDBLDR	16	16	2 or 3 PCLKB
0008 901Ah	S12AD	A/D Temperature Sensor Data Register	ADTSDR	16	16	2 or 3 PCLKB
0008 901Ch	S12AD	A/D Internal Reference Voltage Data Register	ADOCDR	16	16	2 or 3 PCLKB
0008 9020h	S12AD	A/D Data Register 0	ADDR0	16	16	2 or 3 PCLKB
0008 9022h	S12AD	A/D Data Register 1	ADDR1	16	16	2 or 3 PCLKB
0008 9024h	S12AD	A/D Data Register 2	ADDR2	16	16	2 or 3 PCLKB
0008 9026h	S12AD	A/D Data Register 3	ADDR3	16	16	2 or 3 PCLKB
0008 9028h	S12AD	A/D Data Register 4	ADDR4	16	16	2 or 3 PCLKB
0008 902Ch	S12AD	A/D Data Register 6	ADDR6	16	16	2 or 3 PCLKB
0008 9030h	S12AD	A/D Data Register 8	ADDR8	16	16	2 or 3 PCLKB
0008 9032h	S12AD	A/D Data Register 9	ADDR9	16	16	2 or 3 PCLKB
0008 9034h	S12AD	A/D Data Register 10	ADDR10	16	16	2 or 3 PCLKB
0008 9036h	S12AD	A/D Data Register 11	ADDR11	16	16	2 or 3 PCLKB
0008 9038h	S12AD	A/D Data Register 12	ADDR12	16	16	2 or 3 PCLKB
0008 903Ah	S12AD	A/D Data Register 13	ADDR13	16	16	2 or 3 PCLKB
0008 903Ch	S12AD	A/D Data Register 14	ADDR14	16	16	2 or 3 PCLKB
0008 903Eh	S12AD	A/D Data Register 15	ADDR15	16	16	2 or 3 PCLKB
0008 9060h	S12AD	A/D Sampling State Register 0	ADSSTR0	8	8	2 or 3 PCLKB
0008 9061h	S12AD	A/D Sampling State Register L	ADSSTRL	8	8	2 or 3 PCLKB
0008 9070h	S12AD	A/D Sampling State Register T	ADSSTRT	8	8	2 or 3 PCLKB
0008 9071h	S12AD	A/D Sampling State Register O	ADSSTRO	8	8	2 or 3 PCLKB
0008 9073h	S12AD	A/D Sampling State Register 1	ADSSTR1	8	8	2 or 3 PCLKB
0008 9074h	S12AD	A/D Sampling State Register 2	ADSSTR2	8	8	2 or 3 PCLKB
0008 9075h	S12AD	A/D Sampling State Register 3	ADSSTR3	8	8	2 or 3 PCLKB
0008 9076h	S12AD	A/D Sampling State Register 4	ADSSTR4	8	8	2 or 3 PCLKB
0008 9078h	S12AD	A/D Sampling State Register 6	ADSSTR6	8	8	2 or 3 PCLKB
0008 A020h	SCI1	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A021h	SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A022h	SCI1	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A023h	SCI1	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A024h	SCI1	Serial Status Register	SSR	8	8	2 or 3 PCLKB

Table 5.4DC Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} < 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports P16, P17, port PA6, port PB0 (5 V tolerant)	V _{IH}	VCC × 0.8	—	5.8	V	
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8		VCC + 0.3		
	All pins		-0.3	—	VCC × 0.2		
	All pins	ΔV_T	VCC × 0.01	—	—		
Input voltage	MD	V _{IH}	VCC × 0.9	—	VCC + 0.3	V	
(except for Schmitt	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
uiggei input pills)	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	MD	V _{IL}	-0.3	—	VCC × 0.1		
	XTAL (external clock input)		-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		

Table 5.5DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Min.	Тур.	Max.	Unit	Test Conditions
Input leakage current	RES#, MD, port P35, port PH7	I _{in}	—	—	1.0	μA	V _{in} = 0 V, VCC
Three-state	Ports for 5 V tolerant	I _{TSI}	—	—	1.0	μA	V _{in} = 0 V, 5.8 V
leakage current (off-state)	Pins other than above		—	—	1.0		V _{in} = 0 V, VCC
Input capacitance	All input pins (except for port P16, port P35, USB0_DM, USB0_DP)	C _{in}	—	_	15	рF	$V_{in} = 0 \text{ mV},$ Frequency: 1 MHz, $T_a = 25^{\circ}C$
	Port P16, port P35, USB0_DM, USB0_DP		_	—	30		

Table 5.6DC Characteristics (4)

```
Conditions: 1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}
```

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for port P35, port PH7)	R _U	10	20	100	kΩ	V _{in} = 0 V

Figure 5.18 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)

Figure 5.21 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 2.7 V (Reference Data)

Figure 5.22 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 3.3 V (Reference Data)

RENESAS

5.3 AC Characteristics

5.3.1 Clock Timing

Table 5.21 Operation Frequency Value (High-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item			VCC					
		Symbol	1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V	When USB in Use*4	Unit	
Maximum operating	System clock (ICLK)	f _{max}	8	16	32	24	MHz	
frequency	FlashIF clock (FCLK)*1, *2		8	16	32	24		
	Peripheral module clock (PCLKB)			8	16	32	24	
	Peripheral module clock (PCLKD)*3		8	16	32	24		
	USB clock (UCLK)	f _{usb}	—	—	—	48		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use. Note 4. The VCC_USB range is 3.0 to 3.6 V when the USB clock is in use.

Table 5.22 Operation Frequency Value (Middle-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			VCC					
		Symbol	1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V	When USB in Use*4	Unit	
Maximum operating	System clock (ICLK)	f _{max}	8	12	12	12	MHz	
frequency	FlashIF clock (FCLK)*1, *2		8	12	12	12		
	Peripheral module clock (PCLKB)		8	12	12	12		
	Peripheral module clock (PCLKD)*3		8	12	12	12		
	USB clock (UCLK)	f _{usb}	—	_	_	48		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be $\pm 3.5\%$.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.

Note 4. The VCC_USB range is 3.0 to 3.6 V when the USB clock is in use.

Table 5.23 Operation Frequency Value (Low-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol		Unit		
		Symbol	1.8 to 2.4 V			
Maximum operating	System clock (ICLK)	f _{max}			kHz	
frequency	FlashIF clock (FCLK)*1					
	Peripheral module clock (PCLKB)					
Peripheral module clock (PCLKD)*2				32.768		

Note 1. Programming and erasing the flash memory is impossible.

Note 2. The A/D converter cannot be used.

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	High-speed mode	Crystal connected to	Main clock oscillator operating* ²	t _{SBYMC}		2	3	ms	Figure 5.34
		main clock oscillator	Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms	
	E) inj ck SL H(External clock input to main clock oscillator	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs	
			Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	-	70	95	μs	
		Sub-clock oscillator operating		t _{SBYSC}	-	650	800	μs	
		HOCO clock oscillator operating*6		t _{SBYHO}	_	40	55	μs	
		LOCO clock oscillator operating		t _{SBYLO}		40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Control Signal Timing 5.3.4

Table 5.31 **Control Signal Timing**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
NMI pulse width	t _{NMIW}	200	—	—	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1	—	—		(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns	
		200	—	—		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns	
		t _{NMICK} × 3.5* ²	_	—		(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns	
IRQ pulse width	t _{IRQW}	200	_	—	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1	_	—		(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns	
		200	_	—		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns	
		t _{IRQCK} × 3.5* ³	_	_		(IRQFLTE0.FLTENi = 1)	t _{IRQCK} × 3 > 200 ns	

Note: • 200 ns minimum in software standby mode. Note 1. t_{Pcyc} indicates the cycle of PCLKB.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 5.36 **NMI Interrupt Input Timing**

Figure 5.37 **IRQ Interrupt Input Timing**

Table 5.34 Timing of On-Chip Peripheral Modules (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $T_a = -40 \text{ to } +105^{\circ}\text{C}$, C = 30 pF

Item		Symbol	Min.	Max.	Unit*1	Test Conditions	
Simple	SCK clock cycle output (master)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 5.46
SPI	SCK clock cycle input (slave)			6	65536		
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time		t _{SPCKr} , t _{SPCKf}	_	20	ns	
	Data input setup time (master)	2.7 V or above	t _{SU}	65		ns	Figure 5.47,
		1.8 V or above		95	95 —		Figure 5.49
	Data input setup time (slave)	·		40	_		
	Data input hold time		t _H	40		ns	
	SS input setup time		t _{LEAD}	3	_	t _{Pcyc}	
	SS input hold time		t _{LAG}	3	_	t _{Pcyc}	
	Data output delay time (master)		t _{OD}	—	40	ns	
	Data output delay time (slave)	2.7 V or above		—	65		
		1.8 V or above		—	85		
	Data output hold time (master)	2.7 V or above	t _{ОН}	-10	_	ns	
		1.8 V or above		-20			
	Data output hold time (slave)			-10			
	Data rise/fall time		t _{Dr,} t _{Df}		20	ns	
	SS input rise/fall time		t _{SSLr,} t _{SSLf}		20	ns	
	Slave access time		t _{SA}	_	6	t _{Pcyc}	Figure 5.51,
	Slave output release time		t _{REL}		6	t _{Pcyc}	Figure 5.52

Note 1. t_{Pcyc} : PCLK cycle

Figure 5.56 AVCC0 to AVREFH0 Voltage Range

Table 5.39 A/D Conversion Characteristics (2)

Conditions: 2.4 V \leq VCC = VCC_USB \leq 3.6 V, 2.4 V \leq AVCC0 \leq 3.6 V, 2.4 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, T_a = -40 to +105°C

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		4	_	16	MHz	
Resolution		—	_	12	Bit	
Conversion time ^{*1} (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = $1.0 \text{ k}\Omega$	2.062 (0.625)*2	_	_	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h
		2.750 (1.313)* ²	_	—	μs	Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	_	VREFH0	V	
Offset error		—	±0.5	±6.0	LSB	
Full-scale error		—	±1.25	±6.0	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±3.0	±8.0	LSB	
DNL differential nonlinearity error		—	±1.0	—	LSB	
INL integral nonlineari	ty error	—	±1.5	±3.0	LSB	

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 5.40 A/D Conversion Characteristics (3)

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8	MHz	
Resolution		—	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = 5.0 kΩ	4.875 (1.250)* ²	_	_	μs	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 09h
		6.250 (2.625)* ²	_	—		Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	_	VREFH0	V	
Offset error		—	±0.5	±24.0	LSB	
Full-scale error		—	±1.25	±24.0	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±2.75	±32.0	LSB	
DNL differential nonlinearity error		—	±1.0	—	LSB	
INL integral nonlinearity error		—	±1.25	±12.0	LSB	

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

5.12 Usage Notes

5.12.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7- μ F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 5.63 to Figure 5.64 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of 0.1 μ F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 30, 12-Bit A/D Converter (S12ADb) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

Figure 5.63Connecting Capacitors (64 Pins)

RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

- 9. Refresses Electronics products and technology may not be used to or incorporated into any products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or or during but not limited to the development of waspons of mass destruction. When exporting the Renessas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong rong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice