

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFLGA
Supplier Device Package	64-FLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51114adlf-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

1.3 Block Diagram

Figure 1.2 shows a block diagram.

Block Diagram

Classifications	Pin Name	I/O	Description
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.
Serial	Asynchronous mode/clock	synchron	ous mode
communications	SCK1, SCK5	J/O	Input/output pins for the clock.
Interface (SCIe)	RXD1, RXD5	Input	Input pins for received data.
	TXD1, TXD5	Output	Output pins for transmitted data.
	CTS1#, CTS5#	Input	Input pins for controlling the start of transmission and reception.
	RTS1#, RTS5#	Output	Output pins for controlling the start of transmission and reception.
Serial	Simple I ² C mode		
communications	SSCL1, SSCL5	I/O	Input/output pins for the I ² C clock.
	SSDA1, SSDA5	I/O	Input/output pins for the I ² C data.
	Simple SPI mode		
	SCK1, SCK5	I/O	Input/output pins for the clock.
	SMISO1, SMISO5	I/O	Input/output pins for slave transmit data.
	SMOSI1, SMOSI5	I/O	Input/output pins for master transmit data.
	SS1#, SS5#	Input	Chip-select input pins.
Serial	Asynchronous mode/clock	synchron	ous mode
communications	SCK12	I/O	Input/output pin for the clock.
	RXD12	Input	Input pin for receiving data.
	TXD12	Output	Output pin for transmitting data.
	CTS12#	Input	Input pin for controlling the start of transmission and reception.
	RTS12#	Output	Output pin for controlling the start of transmission and reception.
	Simple I ² C mode		
	SSCL12	I/O	Input/output pin for the I ² C clock.
	SSDA12	I/O	Input/output pin for the I ² C data.
	Simple SPI mode		
	SCK12	I/O	Input/output pin for the clock.
	SMISO12	I/O	Input/output pin for slave transmit data.
	SMOSI12	I/O	Input/output pin for master transmit data.
	SS12#	Input	Chip-select input pin.
	Extended serial mode		
	RXDX12	Input	Input pin for data reception by SCIf.
	TXDX12	Output	Output pin for data transmission by SCIf.
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.
I ² C bus interface	SCL0	I/O	Input/output pin for I^2C bus interface clocks. Bus can be directly driven by the N-channel open drain output.
	SDA0	I/O	Input/output pin for I^2C bus interface data. Bus can be directly driven by the N-channel open drain output.
Serial peripheral	RSPCKA	I/O	Input/output pin for the RSPI clock.
interface	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.
	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.

Table 1.4Pin Functions (2/3)

Table 1.8List of Pins and Pin Functions (40-Pin HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others	
40	AVCC0					

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCCO.

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
A1	AVSS0				
A2	AVCC0				
A3	VREFH0	PJ6*2			
A4		P42* ²			AN002
A5		P41* ²			AN001
A6		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
B1	RES#				
B2		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/CACREF/ ADTRG0#
B3	VREFL0	PJ7*2			
B4		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
B5		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
B6		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
C1	XTAL				
C2	MD				FINED
C3		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
C4		PE4	MTIOC1A/MTIOC3A/ MTIOC4D	MOSIA	IRQ4/AN012
C5		PA4	MTIOC2B/MTIC5U/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
C6	VSS				
D1	EXTAL				
D2	UPSEL	P35			NMI
D3	UB#	P14	MTIOC0A/MTIOC3A/ MTCLKA	CTS1#/RTS1#/SS1#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/ SSDA12/USB0_OVRCURA	IRQ4
D4		PA6	MTIC5V/MTCLKB/MTIOC2A/ POE2#	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
D5		PB3	MTIOC0A/MTIOC3B/ MTIOC4A/POE3#	USB0_OVRCURA	
D6		PB0	MTIOC0C/MTIC5W	SCL0/RSPCKA	IRQ2/ADTRG0#
E1	VCL				
E2		P17	MTIOC0C/MTIOC3A/ MTIOC3B/POE8#	SCK1/MISOA/SDA0/RXD12/ RXDX12/SMISO12/SSCL12	IRQ7
E3		P16	MTIOC3C/MTIOC3D	TXD1/SMOSI1/SSDA1/SCL0/ MOSIA/USB0_VBUSEN/ USB0_OVRCURB/USB0_VBUS	IRQ6/ADTRG0#
E4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
E5		PC4	MTIOC3D/MTCLKC/POE0#	SCK5/SSLA0/USB0_VBUSEN/ USB0_VBUS*1	IRQ2/CLKOUT
E6	VCC				
F1	VSS				
F2	VCC				
F3	VCC_USB				
F4				USB0_DM	
F5				USB0_DP	
F6	VSS_USB				

 Table 1.9
 List of Pins and Pin Functions (36-Pin WFLGA)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 7026h	ICU	Interrupt Request Register 038	IR038	8	8	2 ICLK
0008 702Ch	ICU	Interrupt Request Register 044	IR044	8	8	2 ICLK
0008 702Dh	ICU	Interrupt Request Register 045	IR045	8	8	2 ICLK
0008 702Eh	ICU	Interrupt Request Register 046	IR046	8	8	2 ICLK
0008 702Fh	ICU	Interrupt Request Register 047	IR047	8	8	2 ICLK
0008 7039h	ICU	Interrupt Request Register 057	IR057	8	8	2 ICLK
0008 703Fh	ICU	Interrupt Request Register 063	IR063	8	8	2 ICLK
0008 7040h	ICU	Interrupt Request Register 064	IR064	8	8	2 ICLK
0008 7041h	ICU	Interrupt Request Register 065	IR065	8	8	2 ICLK
0008 7042h	ICU	Interrupt Request Register 066	IR066	8	8	2 ICLK
0008 7043h	ICU	Interrupt Request Register 067	IR067	8	8	2 ICLK
0008 7044h	ICU	Interrupt Request Register 068	IR068	8	8	2 ICLK
0008 7045h	ICU	Interrupt Request Register 069	IR069	8	8	2 ICLK
0008 7046h	ICU	Interrupt Request Register 070	IR070	8	8	2 ICLK
0008 7047h	ICU	Interrupt Request Register 071	IR071	8	8	2 ICLK
0008 7058h	ICU	Interrupt Request Register 088	IR088	8	8	2 ICLK
0008 7059h	ICU	Interrupt Request Register 089	IR089	8	8	2 ICLK
0008 705Ah	ICU	Interrupt Request Register 090	IR090	8	8	2 ICLK
0008 705Ch	ICU	Interrupt Request Register 092	IR092	8	8	2 ICLK
0008 705Dh	ICU	Interrupt Request Register 093	IR093	8	8	2 ICLK
0008 7066h	ICU	Interrupt Request Register 102	IR102	8	8	2 ICLK
0008 7067h	ICU	Interrupt Request Register 103	IR103	8	8	2 ICLK
0008 706Ah	ICU	Interrupt Request Register 106	IR106	8	8	2 ICLK
0008 7072h	ICU	Interrupt Request Register 114	IR114	8	8	2 ICLK
0008 7073h	ICU	Interrupt Request Register 115	IR115	8	8	2 ICLK
0008 7074h	ICU	Interrupt Request Register 116	IR116	8	8	2 ICLK
0008 7075h	ICU	Interrupt Request Register 117	IR117	8	8	2 ICLK
0008 7076h	ICU	Interrupt Request Register 118	IR118	8	8	2 ICLK
0008 7077h	ICU	Interrupt Request Register 119	IR119	8	8	2 ICLK
0008 7078h	ICU	Interrupt Request Register 120	IR120	8	8	2 ICLK
0008 7079h	ICU	Interrupt Request Register 121	IR121	8	8	2 ICLK
0008 707Ah	ICU	Interrupt Request Register 122	IR122	8	8	2 ICLK
0008 707Bh	ICU	Interrupt Request Register 123	IR123	8	8	2 ICLK
0008 707Ch	ICU	Interrupt Request Register 124	IR124	8	8	2 ICLK
0008 707Dh	ICU	Interrupt Request Register 125	IR125	8	8	2 ICLK
0008 707Eh	ICU	Interrupt Request Register 126	IR126	8	8	2 ICLK
0008 707Fh	ICU	Interrupt Request Register 127	IR127	8	8	2 ICLK
0008 7080h	ICU	Interrupt Request Register 128	IR128	8	8	2 ICLK
0008 7081h	ICU	Interrupt Request Register 129	IR129	8	8	2 ICLK
0008 7082h	ICU	Interrupt Request Register 130	IR130	8	8	2 ICLK
0008 7083h	ICU	Interrupt Request Register 131	IR131	8	8	2 ICI K
0008 7084h	ICU	Interrupt Request Register 132	IR132	8	8	2 ICLK
0008 7085h		Interrupt Request Register 133	IR133	8	8	2 ICL K
0008 7086b		Interrupt Request Register 134	IR134	8	8	2 ICL K
0008 70875		Interrupt Request Register 135	IR135	8	8	2 ICL K
0008 70886		Interrupt Request Register 136	IR135	8	8	2 ICLK
0008 70805			IR127	0 0	0 8	2 10LK
0000 70090			ID122	0	0	
		Interrupt Request Register 130	IR 130	Ö	0	
0008 708Bh		Interrupt Request Register 139	IR139	ð	8	
		Interrupt Request Register 140	IR 140	Ö	0	2 IULK
0008 708Dh		Interrupt Reguser Register 141	IR 141	ő	ð 0	

Table 4.1 List of I/O Registers (Address Order) (2/16)

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	—	5.8		
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	—	VCC × 0.3		
	Other than RIIC input pin		-0.3	—	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	—	—		
	Other than RIIC input pin		VCC × 0.1	—	—		
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
(except for Schmitt	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1	_	VCC + 0.3		
	MD	V _{IL}	-0.3	—	VCC × 0.1		
	XTAL (external clock input)	1	-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)		-0.3		0.8		

Table 5.4DC Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} < 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Schmitt trigger input voltage	Ports P16, P17, port PA6, port PB0 (5 V tolerant)	V _{IH}	VCC × 0.8	—	5.8	V	
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8		VCC + 0.3		
	All pins		-0.3	—	VCC × 0.2		
	All pins	ΔV_T	VCC × 0.01	—	—		
Input voltage	MD	V _{IH}	VCC × 0.9	—	VCC + 0.3	V	
(except for Schmitt	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
trigger input pins)	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	MD	V _{IL}	-0.3	—	VCC × 0.1		
	XTAL (external clock input)		-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		

Table 5.5DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Input leakage current	RES#, MD, port P35, port PH7	I _{in}	—	—	1.0	μA	V _{in} = 0 V, VCC
Three-state leakage current (off-state)	Ports for 5 V tolerant	I _{TSI}	—	—	1.0	μA	V _{in} = 0 V, 5.8 V
	Pins other than above		—	—	1.0		V _{in} = 0 V, VCC
Input capacitance	All input pins (except for port P16, port P35, USB0_DM, USB0_DP)	C _{in}	—	_	15	рF	$V_{in} = 0 \text{ mV},$ Frequency: 1 MHz, $T_a = 25^{\circ}C$
	Port P16, port P35, USB0_DM, USB0_DP		_	—	30		

Table 5.6DC Characteristics (4)

```
Conditions: 1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}
```

Item			Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for port P35, port PH7)	R _U	10	20	100	kΩ	V _{in} = 0 V

Table 5.8DC Characteristics (6) (2/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item					Тур *4	Max	Unit	Test Conditions
Supply Low-speed Nor current*1 operating oper mode mode	Low-speed operating	Normal operating	No peripheral operation* ⁸	ICLK = 32.768 kHz	I _{CC}	4.3	— μΑ		
	mode	mode	All peripheral operation: Normal* ^{9, *10}	ICLK = 32.768 kHz		14.7	-		
		All peripheral operation: Max.* ^{9, *10}	ICLK = 32.768kHz			60			
Sleep		Sleep mode	No peripheral operation* ⁸	ICLK = 32.768 kHz		2.2	_		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		8.3			
		Deep sleep mode	No peripheral operation* ⁸	ICLK = 32.768 kHz		1.7	_		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		6.7	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.

Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to divided by 64.

Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.

Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

[256-Kbyte or more flash memory]

Table 5.10DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Typ.* ³	Max.	Unit	Test Conditions
Supply	Software standby	T _a = 25°C	I _{CC}	0.44	0.98	μA	
current*1	mode*2	T _a = 55°C		0.80	3.47		
		T _a = 85°C		2.7	12.0		
		T _a = 105°C		6.17	42.7		
	Increment for RTC operation*4			0.31			RCR3.RTCDV[2:0] = 010b
				1.09	_		RCR3.RTCDV[2:0] = 100b
Increment for IWDT oper		T operation		0.37	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The IWDT and LVD are stopped.

Note 3. VCC = 3.3 V.

Note 4. Includes the oscillation circuit.

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item				Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode* ¹	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}		2	3	ms	Figure 5.34
			Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms	
		External clock input to main clock oscillator	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs	
			Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	-	70	95	μs	
		Sub-clock oscillator operating		t _{SBYSC}	-	650	800	μs	
		HOCO clock oscillator operating*6		t _{SBYHO}	_	40	55	μs	
		LOCO clock oscill	ator operating	t _{SBYLO}		40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

5.3.5 **Timing of On-Chip Peripheral Modules**

Timing of On-Chip Peripheral Modules (1) Table 5.32

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	I	Symbol	Min.	Max.	Unit*1	Test Conditions		
I/O ports	Input data pulse width	t _{PRW}	1.5	—	t _{Pcyc}	Figure 5.38		
MTU2	Input capture input pulse width		Single-edge setting	t _{TICW}	1.5	—	t _{Pcyc}	Figure 5.39
			Both-edge setting		2.5	_		
	Timer clock pulse width		Single-edge setting	t _{TCKWH,}	1.5		t _{Pcyc}	Figure 5.40
			Both-edge setting	t _{TCKWL}	2.5	—		
			Phase counting mode		2.5	_	1	
POE	POE# input pulse width			t _{POEW}	1.5	_	t _{Pcvc}	Figure 5.41
SCI	Input clock cycle		Asynchronous	t _{Scvc}	4	_	t _{Pcvc}	Figure 5.42
			Clock synchronous	,-	6	_	,.	-
	Input clock pulse width		,	teckw	0.4	0.6	teava	
	Input clock rise time			took	_	20	ns	
				+ SCKr		20	- 110	
			A	^L SCKf		20	115	Figure 5 40
	Output clock cycle		Asynchronous	t _{Scyc}	16	_	t _{Pcyc}	Figure 5.43 C = 30 pF
			Clock synchronous		4			0 00 pi
	Output clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time			t _{SCKr}	_	20	ns	
Output clock fall time			t _{SCKf}	—	20	ns		
	Transmit data delay time Clock synchro (master)		onous	t _{TXD}	_	40	ns	
	Transmit data delay time	Clock	2.7 V or above		_	65	ns	
	(slave)	synchronous	1.8 V or above		_	100	ns	
	Receive data setup time	Clock	2.7 V or above	texs	65	_	ns	
	(master)	synchronous	1.8 V or above	1010	90	_	ns	
	Receive data setup time	Clock synchro	< synchronous		40	_	ns	
	(slave)							
	Receive data hold time	Clock synchro	onous	t _{RXH}	40	—	ns	
A/D converter	Trigger input pulse width			t _{TRGW}	1.5		t _{Pcyc}	Figure 5.44
CAC	C CACREF input pulse width		t _{Pcyc} ≤ t _{cac} *²	t _{CACREF}	4.5 t _{cac} + 3 t _{Pcyc}		ns	
			t _{Pcyc} > t _{cac} *2	_	5 t _{cac} + 6.5 t _{Pcyc}			
CLKOUT	CLKOUT pin output cycle*4		VCC = 2.7 V or above	t _{Ccvc}	125	—	ns	
			VCC = 1.8 V or above		250			
	CLKOUT pin high pulse width*3		VCC = 2.7 V or above	t _{CH}	35	_	ns	1
			VCC = 1.8 V or above		70			
	CLKOUT pin low pulse width*3		VCC = 2.7 V or above	t _{CL}	35	—	ns	
	CLKOUT pin output rise time		VCC = 1.8 V or above		70			
			VCC = 2.7 V or above	t _{Cr}	—	15	ns	
			VCC = 1.8 V or above			30		
	CLKOUT pin output fall tir	ne	VCC = 2.7 V or above	t _{Cf}	—	15	ns	
			$v \cup U = 1.8 V \text{ or above}$	1		30	1	1

Note 1. t_{Pcyc}: PCLK cycle Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[2:0] bits = 000b), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).

Note 4. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[2:0] bits = 010b and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Table 5.33 Timing of On-Chip Peripheral Modules (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V},$ $T_a = -40$ to +105°C, C = 30 pF

		Symbol	Min.	Max.	Unit	Test Conditions	
PI RSPCK clock	RSPCK clock Master cycle Slave		t _{SPcyc}	2	4096	t _{Pcyc}	Figure 5.46
cycle				8	4096	*1	
RSPCK clock high pulse width	Master Slave		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns	
				(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	—		
RSPCK clock low pulse width	Master Slave		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	1	ns	
				(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	_		
RSPCK clock	Output	2.7 V or above	t _{SPCKr,}	_	10	ns	
rise/fall time		1.8 V or above	t _{SPCKf}	—	15		
	Input			_	1	μs	
Data input setup	Master	2.7 V or above	t _{SU}	10	_	ns	Figure 5.47 to Figure 5.52
time		1.8 V or above		30	_		
	Slave			25 – t _{Pcvc}	_		
Data input hold time	a input hold Master RSPCK set to division ratio o PCLKB divider		t _H	t _{Pcyc}	_	ns	
		RSPCK set to PCLKB divided by 2	t _{HF}	0	_		
	Slave		t _H	20 + 2 × t _{Pcyc}	_		
SSL setup time	Master		t _{LEAD}	-30 + N*2 × t _{SPcyc}	_	ns	•
	Slave Master		t _{LAG}	2	_	t _{Pcyc} ns	
SSL hold time				–30 + N* ³ × t _{SPcvc}	_		
	Slave			2	_	t _{Pcvc}	
Data output delay	Master	2.7 V or above	ton	_	14	ns	
time		1.8 V or above		_	30		
	Slave	2.7 V or above			3 × t _{Povc} + 65		
		1.8 V or above			3 × t _{Povo} +105		
Data output hold	Master	2.7 V or above	tон	0		ns	
time		1.8 V or above	011	-20	_		
	Slave	Slave		0		-	
Successive	Master		t _{TD}	tenava + 2 × tenava	8 × terraine + 2 × trave	ns	
transmission delay time	Slave		-10	4 × t _{Pcyc}	—		
MOSI and MISO	and MISO Output 2.7 V		t _{Dr,} t _{Df}	_	10	ns	ł
rise/fall time		1.8 V or above		—	20		
	Input		1	_	1	μs	1
SSL rise/fall time	Output Input		t _{SSLr,} t _{SSLf}	—	20	ns	t
					1	μs	
Slave access time	1	2.7 V or above	t _{SA}	—	6	t _{Pcvc}	Figure 5.51,
		1.8 V or above		—	7	- , -	Figure 5.52
Slave output release	e time	2.7 V or above	t _{REL}	—	5	t _{Pcvc}	1
					6	-,-	

Note 1. t_{Pcyc}: PCLK cycle Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD) Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

Figure 5.52 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0)

Figure 5.53 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

Classification	Channel	Conditions	Remarks		
High-precision channel	AN000 to AN004, AN006	AVCC0 = 1.8 to 3.6 V	Pins AN000 to AN004 and AN006 cannot be used as digital outputs when the A/D converter is in use.		
Normal-precision channel	AN008 to AN015				
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 3.6 V			
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 3.6 V			

Table 5.41 A/D Converter Channel Classification

Table 5.42 A/D Internal Reference Voltage Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}^{*1}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Internal reference voltage input channel* ²	1.36	1.43	1.50	V	

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.

5.6 D/A Conversion Characteristics

Table 5.43 D/A Conversion Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, fPCLKB $\le 32 \text{ MHz}$, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

lt	Min.	Тур.	Max.	Unit	Test Conditions	
Resolution	_	—	8	Bit		
Conversion time	VCC = 2.7 to 3.6 V	_	—	3.0	μs 35-pF capacitive load	
	VCC = 1.6 to 2.7 V	_	—	6.0		
Absolute accuracy	VCC = 2.4 to 3.6 V	_	—	±3.0	LSB	2-MΩ resistive load
	VCC = 1.8 to 2.4 V	_	—	±3.5		
	VCC = 2.4 to 3.6 V	_	—	±2.0	LSB	4-MΩ resistive load
	VCC = 1.8 to 2.4 V	_	—	±2.5		
RO output resistance	—	6.4	—	kΩ		

5.7 Temperature Sensor Characteristics

Table 5.44 Temperature Sensor Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	—	_	±1.5	—	°C	2.4 V or above
		—	±2.0	—		Below 2.4 V
Temperature slope	—	—	-3.65	—	mV/°C	
Output voltage (at 25°C)	—	—	1.05	—	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	—	—	5	μs	
Sampling time	_	5	_	_	μs	

Figure 5.64 Connecting Capacitors (48-pin LFQFP)

REVISION HISTORY

RX111 Group Datasheet

_	_	Description						
Rev.	Date	Page	Summary					
0.60	Apr 15, 2013		First edition, issued					
0.90	May 15, 2013	Features						
		1 Changed						
		1. Overviev	N					
		2 to 4	Table 1.1 Outline of Specifications changed					
		10 to 12	Table 1.4 Pin Functions changed					
		13	Figure 1.3 Pin Assignments of the 64-Pin LQFP changed					
		14	Figure 1.4 Pin Assignments of the 64-Pin WFLGA changed					
		15	Figure 1.5 Pin Assignments of the 48-Pin LQFP/HWQFN changed					
		18, 19	Table 1.5 List of Pins and Pin Functions (64-Pin LQFP) changed, Note 1 added					
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed, Note 1 added					
		22, 23	Table 1.7 List of Pins and Pin Functions (48-Pin LQFP/HWQFN) changed, Note 1 added					
		24, 25	Table 1.8 List of Pins and Pin Functions (40-Pin HWQFN) changed, Note 1 added					
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed, Note 1 added					
		4. I/O Regi	sters					
		33 to 48	Table 5.1 List of I/O Registers (Address Order) changed					
1.00	Jun 19, 2013	1. Overviev	N					
		9	Figure 1.2 Block Diagram changed					
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed					
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed					
		4. I/O Regi	sters					
		33 to 48	Table 4.1 List of I/O Registers (Address Order) changed					
		5. Electrica	I Characteristics					
		49 to 99	Added					
1.20	Sep 29, 2014	1. Overviev	N					
		2 to 4	Table 1.1 Outline of Specifications: ROM capacity and RAM capacity changed, Unique ID added					
		6, 7	Table 1.3 List of Products, changed					
		8	Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type, changed					
		9	Figure 1.2 Block Diagram changed					
		10	Table 1.4 Pin Functions changed					
		15	Figure 1.5 Pin Assignments of the 48-Pin LFQFP/HWQFN: Note added					
		16	Figure 1.6 Pin Assignments of the 40-Pin HWQFN: Note added					
		3. Address	Space					
		30 4 1/0 Deci	rigure 3.1 wemory map, changed					
		4. I/O Regi	Stells Table 4.1 List of I/O Desisters (Address Order), shanced					
		33 10 46	Table 4.1 List of I/O Registers (Address Order), changed					
			Toble 5.1 Absolute Maximum Patings, Toble 5.2 Recommanded Operating Conditions, changed					
		49 50	Table 5.2 DC Characteristics (1) and Table 5.4 DC Characteristics (2) changed					
		51	Table 5.5 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed					
		55 56	Table 5.8 DC Characteristics (6), changed					
		56	Table 5.9 DC Characteristics (7), changed					
		58	Table 5.10 DC Characteristics (8) added					
		59	Table 5.13 DC Characteristics (1), changed					
		61	Table 5 19 Output Values of Voltage (1) and Table 5 20 Output Values of Voltage (2) changed					
		68	Table 5 22 Operation Frequency Value (Middle-Speed Operating Mode) changed					
			Note 4 added					
		69	Table 5.24 Clock Timing, changed					
		78 Table 5.32 Timing of On-Chip Peripheral Modules (1) changed						
		81	Table 5.35 Timing of On-Chip Peripheral Modules (4), changed					
		82	Table 5.36 Timing of On-Chip Peripheral Modules (5): Note 2 deleted					
		83	Figure 5.37 SCK Clock Input Timing changed					
		84	Figure 5.38 SCI Input/Output Timing: Clock Synchronous Mode changed					

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

- 9. Refresses Electronics products and technology may not be used to or incorporated into any products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or or during but not limited to the development of waspons of mass destruction. When exporting the Renessas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong rong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice