

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51115adfk-3a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.

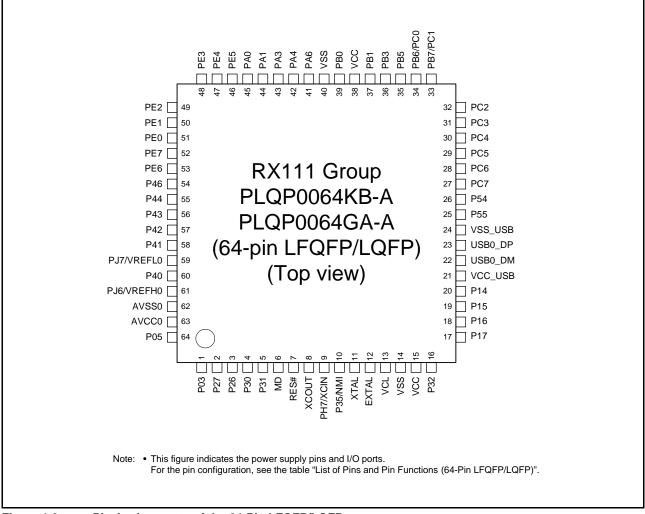


Figure 1.3 Pin Assignments of the 64-Pin LFQFP/LQFP

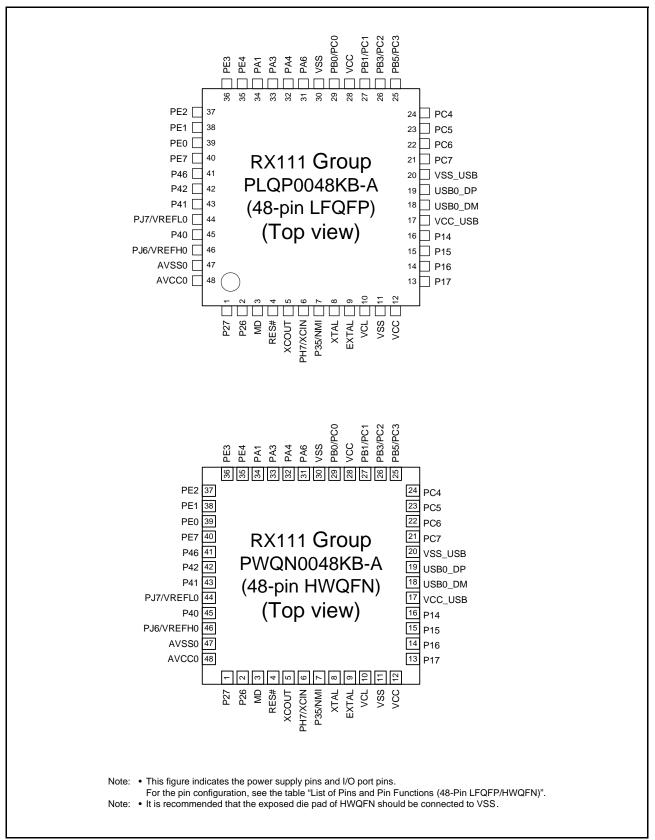


Figure 1.5 Pin Assignments of the 48-Pin LFQFP/HWQFN

RENESAS

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
F2		P32	MTIOC0C/RTCOUT		IRQ2
F3	UPSEL	P35			NMI
F4	UB#	P14	MTIOC0A/MTIOC3A/ MTCLKA	CTS1#/RTS1#/SS1#/TXD12/ TXDX12/SIOX12/SMOSI12/ SSDA12/SSLA0/USB0_OVRCURA	IRQ4
F5		P54	MTIOC4B		
F6		PC7	MTIOC3A/MTCLKB	TXD1/SMOSI1/SSDA1/MISOA/ USB0_OVRCURB	CACREF
F7		PC4	MTCLKC/MTIOC3D/POE0#	SCK5/SSLA0/USB0_VBUSEN/ USB0_VBUS*1	IRQ2/CLKOUT
F8		PB5	MTIOC1B/MTIOC2A/POE1#		
G1	VCL				
G2		P17	MTIOC0C/MTIOC3A/ MTIOC3B/POE8#	SCK1/MISOA/SDA0/RXD12/ RXDX12/SMISO12/SSCL12	IRQ7
G3		P16	MTIOC3C/MTIOC3D/ RTCOUT	TXD1/SMOSI1/SSDA1/SCL0/ MOSIA/USB0_VBUSEN/ USB0_OVRCURB/USB0_VBUS	IRQ6/ADTRG0#
G4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
G5		PC6	MTIOC3C/MTCLKA	RXD1/SMISO1/SSCL1/MOSIA/ USB0_EXICEN	
G6		PC5	MTIOC3B/MTCLKD	SCK1/RSPCKA/USB0_ID	
G7		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	
G8		PB6/PC0	MTIOC3D		
H1	VSS				
H2	VCC				
H3	VCC_USB				
H4				USB0_DM	
H5				USB0_DP	
H6	VSS_USB				
H7		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	
H8		PB7/PC1	MTIOC3B		

 Table 1.6
 List of Pins and Pin Functions (64-Pin WFLGA) (2/2)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

2. CPU

Figure 2.1 shows the register set of the CPU.

	R15		
Control regist b31	ISP USP INTB PC	(Interrupt stack pointer) (User stack pointer) (Interrupt table register) (Program counter)	b(
	PSW	(Processor status word)	
	BPC	(Backup PC)	
	BPSW	(Backup PSW)	

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Conditions: VSS = AVSS0 = VREFL0 = VSS_USB = 0 V

Item		Symbol	Value	Unit	
Power supply voltag	e	VCC, VCC_USB	-0.3 to +4.6	V	
Input voltage	Ports for 5 V tolerant*1	V _{in}	-0.3 to +6.5	V	
	Ports P40 to P44, P46, ports PJ6, PJ7	V _{in}	-0.3 to AVCC0 +0.3	V	
	Ports other than above	V _{in}	-0.3 to VCC +0.3	V	
Reference power supply voltage		VREFH0	-0.3 to AVCC0 +0.3	V	
Analog power supply	y voltage	AVCC0	-0.3 to +4.6		
Analog input voltage		V _{AN}	-0.3 to AVCC0 + 0.3 (when AN000 to AN004 and AN006 used) -0.3 to VCC + 0.3 (when AN008 to AN015 used)	V	
Operating temperature*2		T _{opr}	-40 to +85 -40 to +105	°C	
Storage temperature	9	T _{stg}	-55 to +125	°C	

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, and between the VREFH0 and VREFL0 pins. Place capacitors of about 0.1 μ F as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance.

Connect the VCL pin to a VSS pin via a 4.7 µF capacitor. The capacitor must be placed close to the pin, refer to section 5.12.1, Connecting VCL Capacitor and Bypass Capacitors.

Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered. The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

If input voltage (within the specified range from -0.3 to + 6.5V) is applied to 5-V tolerant ports, it will not cause problems such as damage to the MCU.

Note 1. Ports P16, P17, PA6, and PB0 are 5 V tolerant. Note 2. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to 1.2 List of Products.

Table 5.2	Operating Conditions
-----------	-----------------------------

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltages	VCC*1	When USB not used	1.8	—	3.6	V
		When USB used	3.0	—	3.6	V
	VSS		_	0	—	V
USB power supply voltages	VCC_USB		_	VCC	—	V
	VSS_USB			0	—	V
Analog power supply voltages	AVCC0*1, *2		1.8	—	3.6	V
	AVSS0		_	0	—	V
	VREFH0		1.8	—	AVCC0	V
	VREFL0		_	0	—	V

Note 1. When powering on AVCC0 and VCC, power them on at the same time or VCC first.

Note 2. For details, refer to section 30.7.10, Voltage Range of Analog Power Supply Pins in the User's Manual: Hardware.

[128-Kbyte or less flash memory]

Table 5.7DC Characteristics (5) (1/2)

Conditions: 1.8 V \leq VCC = VCC_USB \leq 3.6 V, 1.8 V \leq AVSS0 \leq 3.6 V, VSS = AVSS0 = VSS_USB = 0 V, T_a = -40 to +105°C

		It	em		Symbol	Тур *4	Max	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral operation*2	ICLK = 32 MHz	I _{CC}	3.2		mA	
current*1	operating mode	operating mode		ICLK = 16 MHz		2.2	_		
		mode		ICLK = 8 MHz		1.7	_		
			All peripheral operation:	ICLK = 32 MHz		10.6	_		
			Normal* ³	ICLK = 16 MHz		6.1	_		
				ICLK = 8 MHz		3.7	_		
			All peripheral operation: Max.* ³	ICLK = 32 MHz		_	24		
		Sleep mode	No peripheral operation*2	ICLK = 32 MHz		1.8			
				ICLK = 16 MHz		1.4	_		
				ICLK = 8 MHz		1.1	_		
			All peripheral operation:	ICLK = 32 MHz		6.4	_		
			Normal* ³	ICLK = 16 MHz		3.7	_		
				ICLK = 8 MHz		2.4	_		
		Deep sleep	No peripheral operation*2	ICLK = 32 MHz		1.2	_		
		mode		ICLK = 16 MHz	-	1.0			
				ICLK = 8 MHz	-	0.90			
			All peripheral operation:	ICLK = 32 MHz		4.6	_		
			Normal* ³	ICLK = 16 MHz		2.8	_		
				ICLK = 8 MHz		1.8	_		
		Increase during	flash rewrite*5			2.5	_		
	Middle-speed	Normal		ICLK = 12 MHz		2.0	_	mA	
	operating modes	operating mode	All peripheral operation: Normal* ⁷	ICLK = 8 MHz		1.3	_		
				ICLK = 1 MHz		0.75	_		
				ICLK = 12 MHz		4.9	_		
				ICLK = 8 MHz		3.5	_		
				ICLK = 1 MHz		1.2	_		
			All peripheral operation: Max.*7	ICLK = 12 MHz	-	_	11		
		Sleep mode	No peripheral operation*6	ICLK = 12 MHz		1.4	—		
				ICLK = 8 MHz		0.85	—		
				ICLK = 1 MHz		0.65	_		
			All peripheral operation:	ICLK = 12 MHz		3.2	_		
			Normal* ⁷	ICLK = 8 MHz		2.2	_		
				ICLK = 1 MHz		1.0			
		Deep sleep	No peripheral operation*6	ICLK = 12 MHz		1.2	_		
		mode		ICLK = 8 MHz		0.70	_		
				ICLK = 1 MHz		0.60	_		
		All peripheral operation:	ICLK = 12 MHz		2.5	_			
		All peripheral operation: Normal* ⁷							
				ICLK = 8 MHz		1.8	_		
						1.8 0.90			

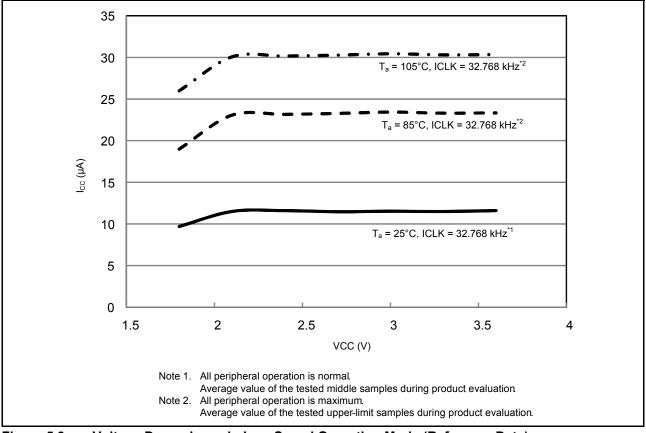


Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

Table 5.8DC Characteristics (6) (2/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

			Item	Symbol	Typ *4	Max	Unit	Test Conditions	
Supply current*1	rrent*1 operating operating		No peripheral operation* ⁸	ICLK = 32.768 kHz	I _{CC}	4.3	_	μA	
mode	mode	All peripheral operation: Normal* ^{9, *10}	ICLK = 32.768 kHz		14.7	-			
			All peripheral operation: Max.* ^{9, *10}	ICLK = 32.768kHz			60		
		Sleep mode Deep sleep mode	No peripheral operation* ⁸	ICLK = 32.768 kHz		2.2	_		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz	_	8.3		-	
			No peripheral operation* ⁸	ICLK = 32.768 kHz		1.7	-		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		6.7	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.

Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to divided by 64.

Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.

Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

[128-Kbyte or less flash memory]

Table 5.9DC Characteristics (7)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Typ.* ³	Max.	Unit	Test Conditions
Supply	Software standby	T _a = 25°C	I _{CC}	0.35	0.53	μA	
current*1	mode* ²	T _a = 55°C		0.58	1.45		
		T _a = 85°C		1.60	7.30		
		T _a = 105°C		3.30	16.50		
	Increment for RTC of	peration*4		0.31	_		RCR3.RTCDV[2:0] = 010b
				1.09	_		RCR3.RTCDV[2:0] = 100b
	Increment for IWDT operation			0.37			

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The IWDT and LVD are stopped.

Note 3. VCC = 3.3 V.

Note 4. Includes the oscillation circuit.

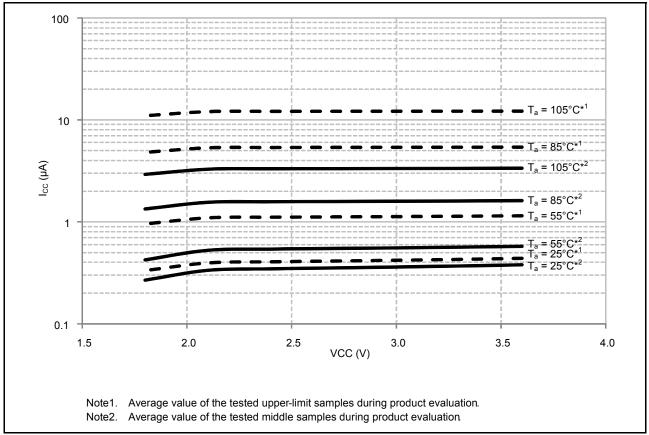


Figure 5.7 Voltage Dependency in Software Standby Mode (Reference Data)

Table 5.12 DC Characteristics (10)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.* ⁷	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	—	0.7	1.2	mA	
supply current	Waiting for A/D (all units)			—	0.3	μA	
	During D/A conversion (per channel)*5			—	1.5	mA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}		25	52	μA	
power supply current	Waiting for A/D conversion (all units)			—	60	nA	
Temperature sensor* ⁶		I _{TEMP}	—	75	-	μA	
LDV1, 2	Per channel	I _{LVD}	—	0.15	—	μA	
USB operating current	 During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port. 	I _{USBH} *2	_	4.3 (VCC) 0.9 (VCC_USB) *4	_	mA	
	 During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port. 	I _{USBF} *2		3.6 (VCC) 1.1 (VCC_USB) *4		mA	
	 During suspended state under the following setting and conditions Function controller operation is set to full-speed mode (pull up the USB0_DP pin) Software standby mode Connect the host device via a 1-meter USB cable from the USB port. 	I _{SUSP} *3		0.35 (VCC) 170 (VCC_USB) *4	_	μA	

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.
Note 2. Current consumed only by the USB module.
Note 3. Includes the current supplied from the pull-up resistor of the USB0_DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. The value of the current flowing to VCC.

Note 6. Current consumed by the power supply (VCC). Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

Table 5.13DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8	—		V	

5.2.2 Standard I/O Pin Output Characteristics (2)

Figure 5.16 to Figure 5.18 show the characteristics of the RIIC output pin.

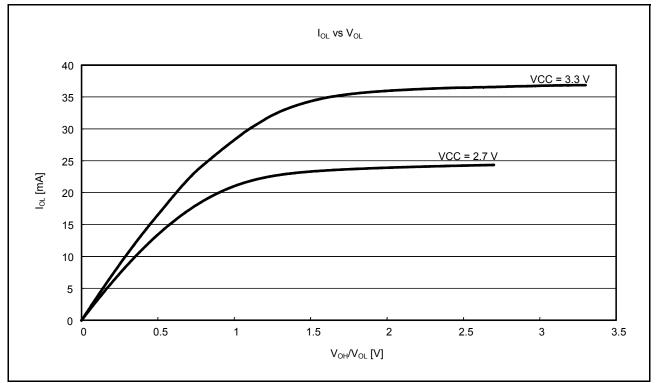


Figure 5.16 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at T_a = 25°C (Reference Data)

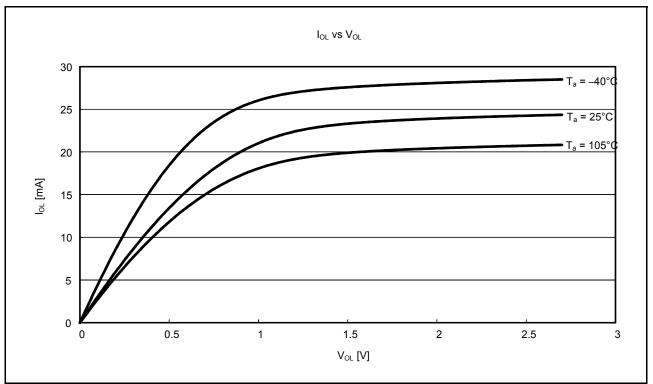
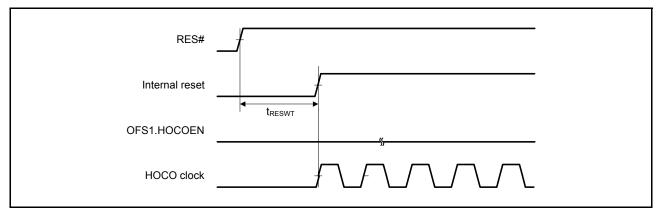



Figure 5.17 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

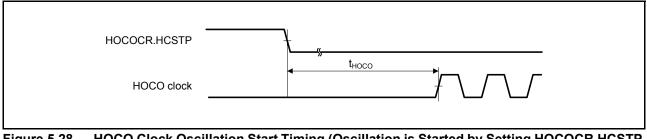


Figure 5.28 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

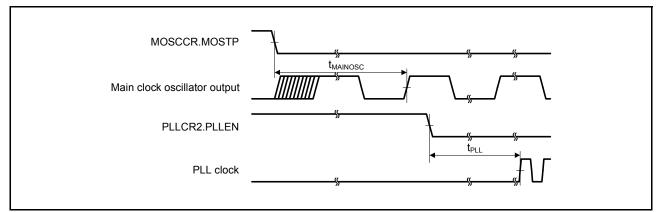
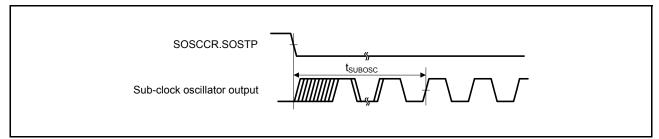



Figure 5.29 PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Settled)

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

		Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software	High-speed mode	Crystal connected to	Main clock oscillator operating* ²	t _{SBYMC}	_	2	3	ms	Figure 5.34
standby mode*1		main clock oscillator	Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms	
		External clock input to main clock oscillator	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs	
			Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}		70	95	μs	
		Sub-clock oscillate	Sub-clock oscillator operating		-	650	800	μs	
		HOCO clock oscill	lator operating*6	t _{SBYHO}	_	40	55	μs	
		LOCO clock oscill	ator operating	t _{SBYLO}	_	40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

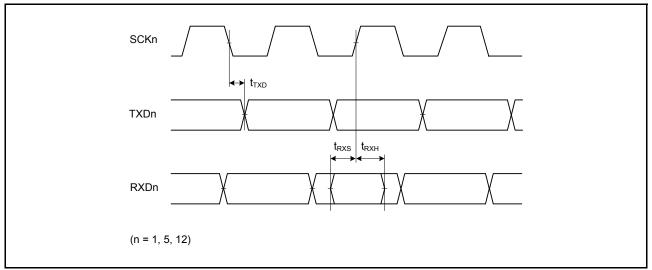


Figure 5.43 SCI Input/Output Timing: Clock Synchronous Mode

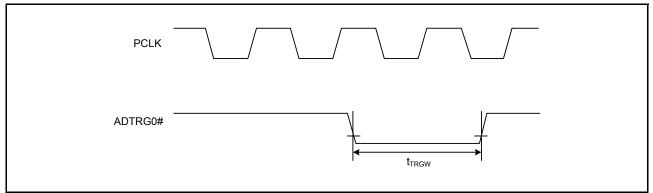


Figure 5.44 A/D Converter External Trigger Input Timing

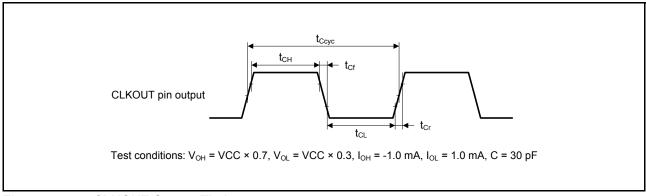


Figure 5.45 CLKOUT Output Timing

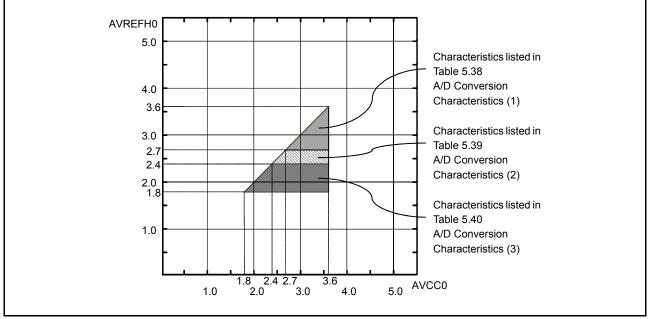
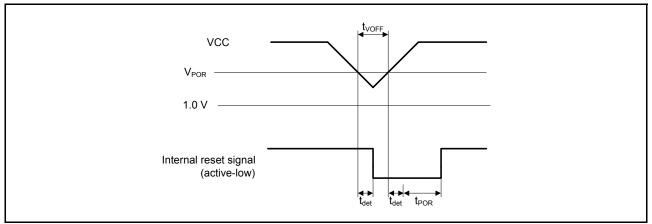



Figure 5.56 AVCC0 to AVREFH0 Voltage Range

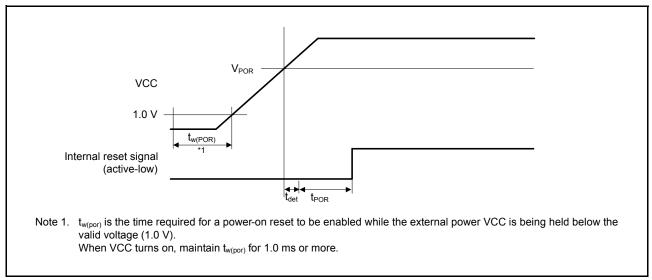


Figure 5.59 Power-On Reset Timing

Table 5.50 ROM (Flash Memory for Code Storage) Characteristics (3)

Middle-speed operating mode Conditions: 1.8 V ≤ VCC ≤ 3.6 V, 1.8 V ≤ AVSS0 ≤ 3.6 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FC	CLK = 1 MH	lz		Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	4-byte	t _{P4}		143	1330	_	96.8	932	μs
Erasure time	1-Kbyte	t _{E1K}		8.3	269	—	5.85	219	ms
	256-Kbyte	t _{E256K}	_	407	928	—	93	520	ms
Blank check time	4-byte	t _{BC4}		—	78	_	_	50	μs
	1-Kbyte	t _{BC1K}		—	1.61	—	—	0.369	ms
Erase operation forcible stop time		t _{SED}		—	33.6	—	—	25.6	μs
Start-up area switching setting time		t _{SAS}		13.2	549	—	7.6	445	ms
Access window time		t _{AWS}		13.2	549	—	7.6	445	ms
ROM mode transition wait time 1		t _{DIS}	2	—	—	2	—	—	μs
ROM mode transition wait time 2		t _{MS}	3	—		3	_	—	μs

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

5.11 E2 DataFlash Characteristics

Table 5.51 E2 DataFlash Characteristics (1)

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	_	Times	
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	—		Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	—		Year	
	After 1000000 times of N _{DPEC}		_	1* ^{2, *3}	_	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in 1-byte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

programming the same address for several times as one erasing is not enabled (overwriting is prohibited). Note 2. Characteristics when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 5.52 E2 DataFlash Characteristics (2) : high-speed operating mode

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$

Temperature range for the programming/erasure operation: $T_a = -40$ to $+105^{\circ}C$

Item		Symbol	FCL	K = 1 MHz		FCL	Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1-byte	t _{DP1}	_	86	761	_	40.5	374	μs
Erasure time	1-Kbyte	t _{DE1K}	_	17.4	456	—	6.15	228	ms
	8-Kbyte	t _{DE8K}	_	60.4	499	—	9.3	231	ms
Blank check time	1-byte	t _{DBC1}	_	_	48	—	—	15.9	μs
	1-Kbyte	t _{DBC1K}	_	_	1.58	—	—	0.127	μs
Erase operation forcible stop time		t _{DSED}	_	_	21.5	—	—	12.8	μs
DataFlash STOP recovery time		t _{DSTOP}	5	—	—	5	—	—	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
 The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Table 5.53E2 DataFlash Characteristics (3): middle-speed operating mode

Conditions: $1.8 V \le VCC \le 3.6 V$, $1.8 V \le AVSS0 \le 3.6 V$, $VSS = AVSS0 = VSS_USB = 0 V$

Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FCL	K = 1 MHz		FCL	Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Onit
Programming time	1-byte	t _{DP1}	—	126	1160	—	85.4	818	μs
Erasure time	1-Kbyte	t _{DE1K}	—	17.5	457	—	7.76	259	ms
	8-Kbyte	t _{DE8K}	—	60.5	500	_	16.7	267.6	ms
Blank check time	1-byte	t _{DBC1}	—	_	78	_	—	50	μs
	1-Kbyte	t _{DBC1K}	—	_	1.61	_	—	0.369	ms
Erase operation forcible stop time		t _{DSED}	—		33.5	—	_	25.5	μs
DataFlash STOP recovery time		t _{DSTOP}	720		_	720	_	_	ns

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software. Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

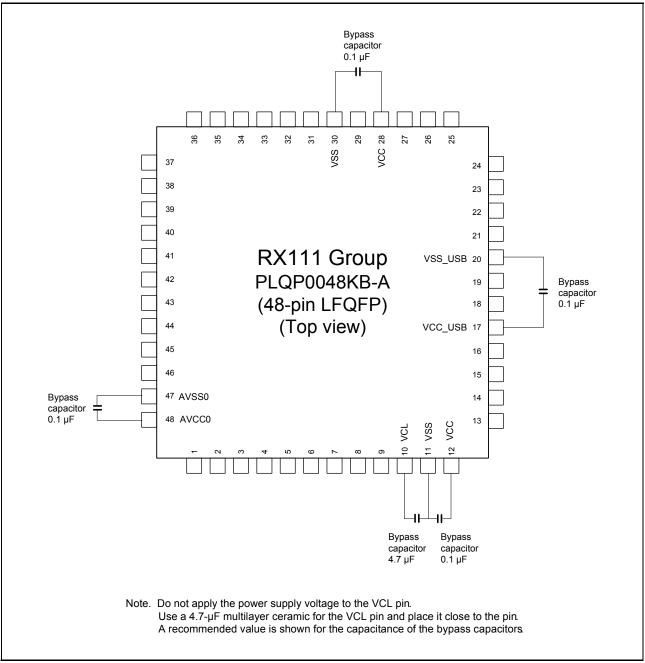


Figure 5.64 Connecting Capacitors (48-pin LFQFP)

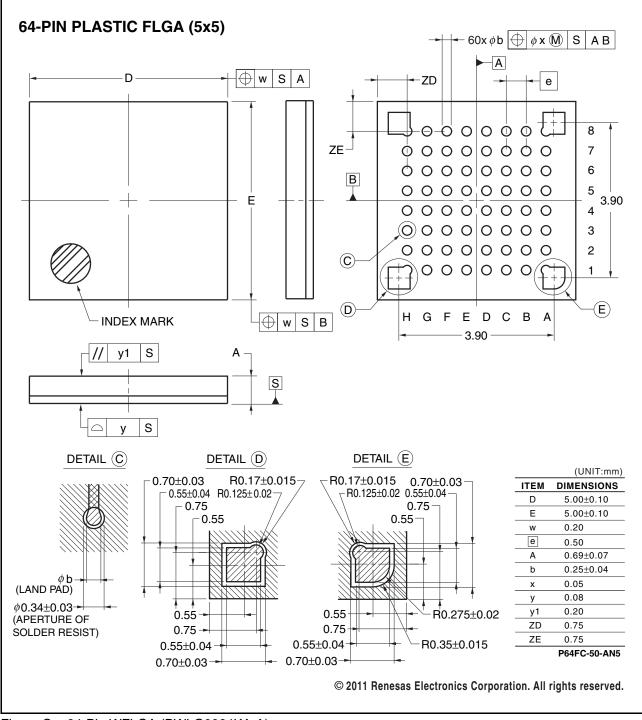


Figure C 64-Pin WFLGA (PWLG0064KA-A)

