

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51115adfm-yb2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.

Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages.

Classification	Module/Function	Description				
CPU	CPU	 Maximum operating frequency: 32 MHz 32-bit RX CPU Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Eight 32-bit registers Accumulator: One 64-bit register Basic instructions: 73 DSP instructions: 9 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32-bit × 32-bit → 64-bit On-chip divider: 32-bit ÷ 32-bit → 32 bits Barrel shifter: 32 bits 				
Memory	ROM	 Capacity: 16 K /32 K /64 K /96 K /128 K /256 K /384 K /512 Kbytes 32 MHz, no-wait memory access Programming/erasing method: Serial programming (asynchronous serial communication/USB communication), self-programming 				
	RAM	 Capacity: 8 K /10 K /16 K /32 K /64 Kbytes 32 MHz, no-wait memory access 				
	E2 DataFlash	 Capacity: 8 Kbytes Number of erase/write cycles: 1,000,000 (typ) 				
MCU operating mode		Single-chip mode				
Clock	Clock generation circuit	 Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator Oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC) Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 32 MHz (at max.) Peripheral modules run in synchronization with the PCLK: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) The ICLK frequency can only be set to FCLK, PCLKB, or PCLKD multiplied by n (n: 1, 2, 4, 8, 16, 32, 64). 				
Resets		RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset				
Voltage detection	Voltage detection circuit (LVDAa)	When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 1 is capable of selecting the detection voltage from 10 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels				
Low power consumption	Low power consumption functions	 Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode 				
	Function for lower operating power consumption	 Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode 				
Interrupt	Interrupt controller (ICUb)	 Interrupt vectors: 82 External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) Non-maskable interrupts: 4 (NMI pin, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt) 16 levels specifiable for the order of priority 				

Table 1.1Outline of Specifications (1/3)

Classification	Module/Function	Description					
	JSB 2.0 host/function module (USBc)	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host (32-Kbyte or more ROM)/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (On-The-Go) is supported. Isochronous transfer is supported. BC (Battery Charger) is supported. 					
12-bit A/D converter	(S12ADb)	 1 unit (1 unit × 14 channels) 12-bit resolution Minimum conversion time: 1.0 µs per channel when the ADCLK is operating at 32 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Double trigger mode (duplication of A/D conversion data) A/D conversion start conditions A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC 					
Temperature sensor	(TEMPSA)	 1 channel The voltage of the temperature is converted into a digital value by the 12-bit A/D converter. 					
D/A converter (DA)		 2 channels 8-bit resolution Output voltage: 0 V to VCC 					
CRC calculator (CRC)		 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1 Generation of CRC codes for use with LSB first or MSB first communications is selectable. 					
Data operation circui	t (DOC)	Comparison, addition, and subtraction of 16-bit data					
Unique ID		32-byte ID code for the MCU					
Power supply voltage	es/Operating frequencies	VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 3.6 V: 32 MHz					
Supply current		3.2 mA at 32 MHz (typ.)					
Operating temperatu	re range	D version: -40 to +85°C, G version: -40 to +105°C					
Packages		64-pin LFQFP (PLQP0064KB-A) 10 × 10 mm, 0.5 mm pitch 64-pin LQFP (PLQP0064GA-A) 14 × 14 mm, 0.8 mm pitch 64-pin WFLGA (PWLG0064KA-A) 5 × 5 mm, 0.5 mm pitch 48-pin LFQFP (PLQP0048KB-A) 7 × 7 mm, 0.5 mm pitch 48-pin HWQFN (PWQN0048KB-A) 7 × 7 mm, 0.5 mm pitch 40-pin HWQFN (PWQN0040KC-A) 6 × 6 mm, 0.50 mm pitch 36-pin WFLGA (PWLG0036KA-A) 4 × 4 mm, 0.5 mm pitch					
On-chip debugging s	system	E1 emulator (FINE interface)					

Table 1.1Outline of Specifications (3/3)

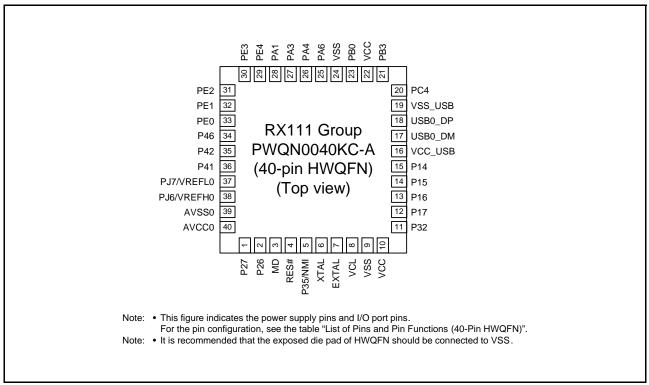


Figure 1.6 Pin Assignments of the 40-Pin HWQFN

Table 1.6	List of Pins and Pin Functions (64-Pin WFLGA) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCle, SClf, RSPI, RIIC, USB)	Others
A1	AVSS0		- · · ·	· · · ·	
A2	AVCC0				
A3	VREFH0	PJ6*2			
A4	VREFL0	PJ7* ²			
A5		P43* ²			AN003
A6		P46*2			AN006
A7		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
A8		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
B1	XCOUT				
B2		P03			DA0
B3		P40* ²			AN000
B4		P42* ²			AN002
B5		P44* ²			AN004
B6		PE6			IRQ6/AN014
B7		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
B8		PE4	MTIOC1A/MTIOC3A/ MTIOC4D	MOSIA	IRQ4/AN012
C1	XCIN	PH7			
C2		P05			DA1
C3		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/CACREF ADTRG0#
C4		P41* ²			AN001
C5		PE7			IRQ7/AN015
C6		PE5	MTIOC2B/MTIOC4C		IRQ5/AN013
C7		PA1	MTIOC0B/MTCLKC/ RTCOUT	SCK5/SSLA2	
C8		PA0	MTIOC4A	SSLA1	CACREF
D1	RES#				
D2		P30	MTIOC4B/POE8#	RXD1/SMISO1/SSCL1	IRQ0
D3		P26	MTIOC2A	TXD1/SMOSI1/SSDA1/ USB0_VBUSEN	
D4		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
D5		PA6	MTIC5V/MTIOC2A/MTCLKB/ POE2#	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
D6		PA4	MTIC5U/MTIOC2B/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
D7		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
D8	VSS				
E1	XTAL				
E2	MD				FINED
E3		P31	MTIOC4D	CTS1#/RTS1#/SS1#	IRQ1
E4		P55	MTIOC4D		
E5		PB3	MTIOC0A/MTIOC3B/ MTIOC4A/POE3#	USB0_OVRCURA	
E6		PB1	MTIOC0C/MTIOC4C		IRQ4
E7		PB0	MTIC5W/MTIOC0C/ RTCOUT	SCL0/RSPCKA	IRQ2/ADTRG0#
E8	VCC				
F1	EXTAL				

• Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

When executing an instruction after writing to multiple registers, only read the last I/O register written to and execute the instruction using that value; it is not necessary to execute the instruction using the values written to all the registers.

(3) Number of cycles necessary for accessing I/O registers

See Table 4.1 for details on the number of clock cycles necessary for accessing I/O registers. The number of access cycles to I/O registers is obtained by following equation.^{*1}

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral buses 1 to 6

The number of bus cycles of internal peripheral buses 1 to 6 differs according to the register to be accessed. When peripheral functions connected to internal peripheral buses 2 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added. The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the bus access from the different bus master (DTC).

(4) Notes on sleep mode and mode transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

4.1 I/O Register Addresses (Address Order)

	Table 4.1	List of I/O	Registers	(Address	Order) (1/16)
--	-----------	-------------	-----------	----------	---------------

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 0000h	SYSTEM	Mode Monitor Register	MDMONR	16	16	3 ICLK
0008 0008h	SYSTEM	System Control Register 1	SYSCR1	16	16	3 ICLK
0008 000Ch	SYSTEM	Standby Control Register	SBYCR	16	16	3 ICLK
0008 0010h	SYSTEM	Module Stop Control Register A	MSTPCRA	32	32	3 ICLK
0008 0014h	SYSTEM	Module Stop Control Register B	MSTPCRB	32	32	3 ICLK
0008 0018h	SYSTEM	Module Stop Control Register C	MSTPCRC	32	32	3 ICLK
0008 0020h	SYSTEM	System Clock Control Register	SCKCR	32	32	3 ICLK
0008 0026h	SYSTEM	System Clock Control Register 3	SCKCR3	16	16	3 ICLK
0008 0028h	SYSTEM	PLL Control Register	PLLCR	16	16	3 ICLK
0008 002Ah	SYSTEM	PLL Control Register 2	PLLCR2	8	8	3 ICLK
0008 0032h	SYSTEM	Main Clock Oscillator Control Register	MOSCCR	8	8	3 ICLK
0008 0033h	SYSTEM	Sub-Clock Oscillator Control Register	SOSCCR	8	8	3 ICLK
0008 0034h	SYSTEM	Low-Speed On-Chip Oscillator Control Register	LOCOCR	8	8	3 ICLK
0008 0035h	SYSTEM	IWDT-Dedicated On-Chip Oscillator Control Register	ILOCOCR	8	8	3 ICLK
0008 0036h	SYSTEM	High-Speed On-Chip Oscillator Control Register	HOCOCR	8	8	3 ICLK
0008 003Ch	SYSTEM	Oscillation Stabilization Flag Register	OSCOVFSR	8	8	3 ICLK
0008 003Eh	SYSTEM	CLKOUT Output Control Register	CKOCR	16	16	3 ICLK
0008 0040h	SYSTEM	Oscillation Stop Detection Control Register	OSTDCR	8	8	3 ICLK
0008 0041h	SYSTEM	Oscillation Stop Detection Status Register	OSTDSR	8	8	3 ICLK
0008 00A0h	SYSTEM	Operating Power Control Register	OPCCR	8	8	3 ICLK
0008 00A1h	SYSTEM	Sleep Mode Return Clock Source Switching Register	RSTCKCR	8	8	3 ICLK
0008 00A2h	SYSTEM	Main Clock Oscillator Wait Control Register	MOSCWTCR	8	8	3 ICLK
0008 00A5h	SYSTEM	High-Speed On-Chip Oscillator Wait Control Register	HOCOWTCR	8	8	3 ICLK
0008 00AAh	SYSTEM	Sub Operating Power Control Register	SOPCCR	8	8	3 ICLK
0008 00C0h	SYSTEM	Reset Status Register 2	RSTSR2	8	8	3 ICLK
0008 00C2h	SYSTEM	Software Reset Register	SWRR	16	16	3 ICLK
0008 00E0h	SYSTEM	Voltage Monitoring 1 Circuit Control Register 1	LVD1CR1	8	8	3 ICLK
0008 00E1h	SYSTEM	Voltage Monitoring 1 Circuit Status Register	LVD1SR	8	8	3 ICLK
0008 00E2h	SYSTEM	Voltage Monitoring 2 Circuit Control Register 1	LVD2CR1	8	8	3 ICLK
0008 00E3h	SYSTEM	Voltage Monitoring 2 Circuit Status Register	LVD2SR	8	8	3 ICLK
0008 03FEh	SYSTEM	Protect Register	PRCR	16	16	3 ICLK
0008 1300h	BSC	Bus Error Status Clear Register	BERCLR	8	8	2 ICLK
0008 1304h	BSC	Bus Error Monitoring Enable Register	BEREN	8	8	2 ICLK
0008 1308h	BSC	Bus Error Status Register 1	BERSR1	8	8	2 ICLK
0008 130Ah	BSC	Bus Error Status Register 2	BERSR2	16	16	2 ICLK
0008 1310h	BSC	Bus Priority Control Register	BUSPRI	16	16	2 ICLK
0008 2400h	DTC	DTC Control Register	DTCCR	8	8	2 ICLK
0008 2404h	DTC	DTC Vector Base Register	DTCVBR	32	32	2 ICLK
0008 2408h	DTC	DTC Address Mode Register	DTCADMOD	8	8	2 ICLK
0008 240Ch	DTC	DTC Module Start Register	DTCST	8	8	2 ICLK
0008 240Eh	DTC	DTC Status Register	DTCSTS	16	16	2 ICLK
0008 7010h	ICU	Interrupt Request Register 016	IR016	8	8	2 ICLK
0008 701Bh	ICU	Interrupt Request Register 027	IR027	8	8	2 ICLK
0008 701Ch	ICU	Interrupt Request Register 028	IR028	8	8	2 ICLK
0008 701Dh	ICU	Interrupt Request Register 029	IR029	8	8	2 ICLK
0008 7020h	ICU	Interrupt Request Register 032	IR032	8	8	2 ICLK
0008 7021h	ICU	Interrupt Request Register 033	IR033	8	8	2 ICLK
0008 7022h	ICU	Interrupt Request Register 034	IR034	8	8	2 ICLK
0008 7024h	ICU	Interrupt Request Register 036	IR036	8	8	2 ICLK
0008 7025h	ICU	Interrupt Request Register 037	IR037	8	8	2 ICLK
		· · · · · · · · ·		-	-	

Table 4.1	List of I/O Registers (Address Order) (11/16)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Acces States
0008 B127h	ELC	Port Buffer Register 1	PDBF1	8	8	2 or 3 PCLKB
0008 B129h	ELC	Event Link Port Setting Register 0	PEL0	8	8	2 or 3 PCLKB
0008 B12Ah	ELC	Event Link Port Setting Register 1	PEL1	8	8	2 or 3 PCLKB
0008 B12Dh	ELC	Event Link Software Event Generation Register	ELSEGR	8	8	2 or 3 PCLKB
0008 B300h	SCI12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 B304h	SCI12	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 B306h	SCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
008 B309h	SCI12	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
008 B30Ah	SCI12	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
008 B30Bh	SCI12	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
008 B30Ch	SCI12	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
008 B320h	SCI12	Extended Serial Mode Enable Register	ESMER	8	8	2 or 3 PCLKB
008 B321h	SCI12	Control Register 0	CR0	8	8	2 or 3 PCLKB
008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB
008 B323h	SCI12	Control Register 2	CR2	8	8	2 or 3 PCLKB
	SCI12		CR3	8	8	
008 B324h		Control Register 3 Port Control Register	PCR			2 or 3 PCLKB
008 B325h	SCI12	Port Control Register		8	8	2 or 3 PCLKB
008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB
008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB
008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB
008 B329h	SCI12	Control Field 0 Data Register	CF0DR	8	8	2 or 3 PCLKB
008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CF0CR	8	8	2 or 3 PCLKB
008 B32Bh	SCI12	Control Field 0 Receive Data Register	CF0RR	8	8	2 or 3 PCLKB
008 B32Ch	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB
008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB
008 B32Eh	SCI12	Control Field 1 Compare Enable Register	CF1CR	8	8	2 or 3 PCLKB
008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB
008 B330h	SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB
008 B331h	SCI12	Timer Mode Register	TMR	8	8	2 or 3 PCLKB
008 B332h	SCI12	Timer Prescaler Register	TPRE	8	8	2 or 3 PCLKB
008 B333h	SCI12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB
008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	_	5.8		
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	_	VCC × 0.3		
	Other than RIIC input pin		-0.3	_	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	_	_	-	
	Other than RIIC input pin		VCC × 0.1	_	—		
Input voltage	MD	V _{IH}	VCC × 0.9		VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8		VCC + 0.3		
uiggei input pins <i>)</i>	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1		VCC + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)	1	-0.3		VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)		-0.3	_	0.8		

[256-Kbyte or more flash memory]

Table 5.8DC Characteristics (6) (1/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

			Item		Symbol	Typ *4	Max	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32 MHz	I _{CC}	3.6	_	mA	
	operating	operating mode	operation*2	ICLK = 16 MHz		2.4	—		
	mode	mode		ICLK = 8 MHz	-	1.8	_		
			All peripheral operation:	ICLK = 32 MHz		13.4	—		
			Normal* ³	ICLK = 16 MHz		7.5	—		
				ICLK = 8 MHz		4.5	—		
			All peripheral operation: Max.* ³	ICLK = 32 MHz		—	27		
		Sleep mode	No peripheral	ICLK = 32 MHz		1.9	—		
			operation*2	ICLK = 16 MHz		1.5	—		
				ICLK = 8 MHz		1.3	—		
			All peripheral operation:	ICLK = 32 MHz		7.6	—		
			Normal* ³	ICLK = 16 MHz		4.4	—		
				ICLK = 8 MHz		2.8	—		
		Deep sleep	No peripheral	ICLK = 32 MHz		1.1	—		
		mode	operation*2	ICLK = 16 MHz		1.0	—		
				ICLK = 8 MHz		0.9	—		
			All peripheral operation: Normal* ³	ICLK = 32 MHz		5.8	—		
				ICLK = 16 MHz		3.4	—		
				ICLK = 8 MHz		2.1	_		
		Increase during flash rewrite*5				2.5	—		
	Middle-speed		No peripheral	ICLK = 12 MHz	I _{CC}	2.1	—	mA	
	modes mc		operation* ⁶	ICLK = 8 MHz		1.4	—		
				ICLK = 1 MHz		0.8	—		
			All peripheral operation: Normal* ⁷	ICLK = 12 MHz		5.9	—		
				ICLK = 8 MHz		4.2	_		
				ICLK = 1 MHz		1.3	_		
			All peripheral operation: Max.* ⁷	ICLK = 12 MHz		—	12.2		
			No peripheral operation* ⁶	ICLK = 12 MHz		1.4	—		
				ICLK = 8 MHz		0.9	—		
				ICLK = 1 MHz		0.7			
			All peripheral operation:	ICLK = 12 MHz		3.6	—		
			Normal* ⁷	ICLK = 8 MHz		2.5	—		
				ICLK = 1 MHz		1.1	—		
		Deep sleep	No peripheral	ICLK = 12 MHz]	1.1	—		
		mode	operation* ⁶	ICLK = 8 MHz	1 1	0.6	—		
				ICLK = 1 MHz	1	0.6	—		
			All peripheral operation:	ICLK = 12 MHz	1 1	2.9	—		
			Normal* ⁷	ICLK = 8 MHz		2.0	—		
				ICLK = 1 MHz		0.9	—		
		Incroaco duri	ng flash rewrite* ⁵		1 1	2.5	L	1	

Table 5.8DC Characteristics (6) (2/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item						Max	Unit	Test Conditions
Supply current*1	Low-speed operating mode	perating operating	No peripheral operation* ⁸	ICLK = 32.768 kHz	I _{CC}	4.3	_	Αų	
			All peripheral operation: Normal* ^{9, *10}	ICLK = 32.768 kHz		14.7	-		
			All peripheral operation: Max.* ^{9, *10}	ICLK = 32.768kHz			60		
		Sleep mode	No peripheral operation* ⁸	ICLK = 32.768 kHz		2.2	_		
		Deep sleep mode	All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		8.3			
			No peripheral operation* ⁸	ICLK = 32.768 kHz		1.7	-		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		6.7	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.

Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to divided by 64.

Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.

Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

Table 5.24 Clock Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
XTAL external clock input cycle time			50	—	—	ns	Figure 5.23
XTAL external clock input high pulse width			20	—	_	ns	
XTAL external clock input low pulse width		t _{XL}	20	_	_	ns	
XTAL external clock rising time		t _{Xr}		_	5	ns	
XTAL external clock falling time		t _{Xf}		—	5	ns	
XTAL external clock input wait time*1		t _{EXWT}	0.5	—	_	μs	
Main clock oscillator oscillation frequency	2.4 ≤ VCC ≤ 3.6	f _{MAIN}	1	—	20	MHz	
	1.8 ≤ VCC < 2.4		1	—	8		
Main clock oscillation stabilization time (crystal)*2		t _{MAINOSC}		3		ms	Figure 5.25
Main clock oscillation stabilization time (ceran	t _{MAINOSC}		50		μs		
LOCO clock oscillation frequency		f _{LOCO}	3.44	4.0	4.56	MHz	
LOCO clock oscillation stabilization time	t _{LOCO}		—	0.5	μs	Figure 5.26	
IWDT-dedicated clock oscillation frequency		f _{ILOCO}	12.75	15	17.25	kHz	
IWDT-dedicated clock oscillation stabilization time		t _{ILOCO}	_	—	50	μs	Figure 5.24
HOCO clock oscillation frequency		f _{HOCO}	31.52	32	32.48	MHz	Ta = -40 to 85°C
			31.68	32	32.32		Ta = -20 to 85°C
			31.36	32	32.64		Ta = -40 to 105°C
HOCO clock oscillation stabilization time		t _{HOCO2}		—	56	μs	Figure 5.28
PLL input frequency*3	f _{PLLIN}	4	—	8	MHz		
PLL circuit oscillation frequency*3		f _{PLL}	32		48	MHz	
PLL clock oscillation stabilization time		t _{PLL}	_	—	50	μs	Figure 5.29
PLL free-running oscillation frequency		f _{PLLFR}	_	8	_	MHz	
Sub-clock oscillator oscillation frequency*5		f _{SUB}		32.768		kHz	
Sub-clock oscillation stabilization time*4		t _{SUBOSC}	_	0.5	_	s	Figure 5.30

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.

Note 2. Reference values when an 8-MHz oscillator is used. When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the oscillator-manufacturer-recommended value. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.

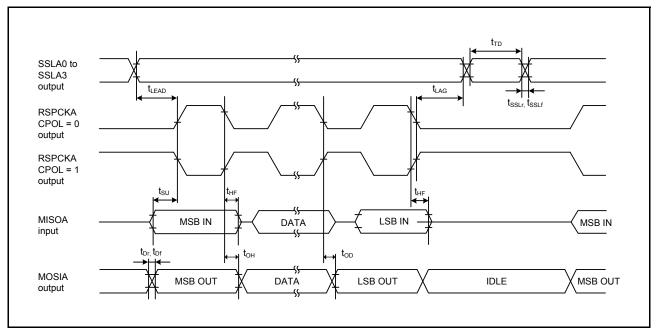
Note 3. The VCC range that the PLL can be used is 2.4 to 3.6 V.

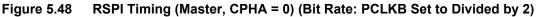
Note 4. After changing the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturer-recommended value has elapsed. Reference value when a 32.768-kHz resonator is used.

Note 5. Only 32.768 kHz can be used.

5.3.5 **Timing of On-Chip Peripheral Modules**

Timing of On-Chip Peripheral Modules (1) Table 5.32


Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$


	I	tem		Symbol	Min.	Max.	Unit*1	Test Conditions
I/O ports	Input data pulse width			t _{PRW}	1.5	_	t _{Pcyc}	Figure 5.38
MTU2	Input capture input pulse width		Single-edge setting	t _{TICW}	1.5	_	t _{Pcyc}	Figure 5.39
			Both-edge setting		2.5	_		
	Timer clock pulse width		Single-edge setting	t _{TCKWH,}	1.5	_	t _{Pcyc}	Figure 5.40
			Both-edge setting	t _{TCKWL}	2.5	_		
			Phase counting mode		2.5	_		
POE	POE# input pulse width			t _{POEW}	1.5		t _{Pcyc}	Figure 5.41
SCI	Input clock cycle		Asynchronous	t _{Scyc}	4	-	t _{Pcyc}	Figure 5.42
			Clock synchronous	-	6	_		
	Input clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time	Input clock rise time			—	20	ns	
	Input clock fall time			t _{SCKf}	—	20	ns	
	Output clock cycle		Asynchronous	t _{Scyc}	16	_	t _{Pcyc}	Figure 5.43 C = 30 pF
			Clock synchronous		4	_		
	Output clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time			t _{SCKr}	—	20	ns	
	Output clock fall time			t _{SCKf}	—	20	ns	
	Transmit data delay time Clock synchro (master)		onous	t _{TXD}	_	40	ns	
	Transmit data delay time (slave)	Clock synchronous	2.7 V or above		—	65	ns	
			1.8 V or above		_	100	ns	
	Receive data setup time (master)	Clock synchronous	2.7 V or above	t _{RXS}	65	_	ns	
			1.8 V or above		90	_	ns	1
	Receive data setup time (slave)	Clock synchronous			40	_	ns	
	Receive data hold time	Clock synchro	onous	t _{RXH}	40	-	ns	
A/D converter	Trigger input pulse width			t _{TRGW}	1.5	_	t _{Pcyc}	Figure 5.44
CAC	CACREF input pulse width		$t_{Pcyc} \le t_{cac}^{*2}$	t _{CACREF}	4.5 t _{cac} + 3 t _{Pcyc}	—	ns	
			t _{Pcyc} > t _{cac} * ²		5 t _{cac} + 6.5 t _{Pcyc}			
CLKOUT			VCC = 2.7 V or above	t _{Ccyc}	125		ns	
			VCC = 1.8 V or above		250			
	CLKOUT pin high pulse width*3		VCC = 2.7 V or above	t _{CH}	35	—	ns	
	CLKOUT pin low pulse width*3		VCC = 1.8 V or above VCC = 2.7 V or above	t	70 35		ns	
			VCC = 2.7 V or above	t _{CL}	70	_	115	
	CLKOUT pin output rise time		VCC = 2.7 V or above	t _{Cr}	—	15	ns	1
			VCC = 1.8 V or above			30		
	CLKOUT pin output fall time		VCC = 2.7 V or above	t _{Cf}	—	15	ns	1
			VCC = 1.8 V or above		, F	30	1	

Note 1. t_{Pcyc}: PCLK cycle Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[2:0] bits = 000b), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).

Note 4. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[2:0] bits = 010b and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

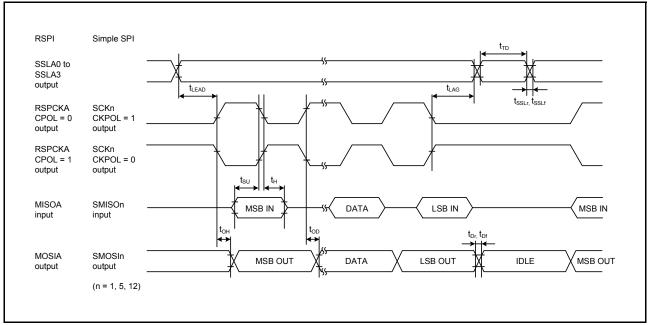


Figure 5.49 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0)

5.5 A/D Conversion Characteristics

Table 5.38 A/D Conversion Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCCO} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0},$ VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, T_a = -40 to +105°C

Item		Min.	Тур. —	Max. 32 12	Unit	Test Conditions	
Frequency	4	MHz Bit					
Resolution							
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) = 0.3 k Ω	1.031 (0.313)* ²	_	—	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h	
		1.375 (0.641)* ²	_	—		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h	
Analog input effective range		0	_	VREFH0	V		
Offset error		_	±0.5	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1	
				±6.0	LSB	Other than above	
Full-scale error		—	±0.75	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1	
				±6.0	LSB	Other than above	
Quantization error		—	±0.5	_	LSB		
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1	
				±8.0	LSB	Other than above	
DNL differential nonlinearity error		—	±1.0	—	LSB		
INL integral nonlinea	rity error	_	±1.0	±3.0	LSB		

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

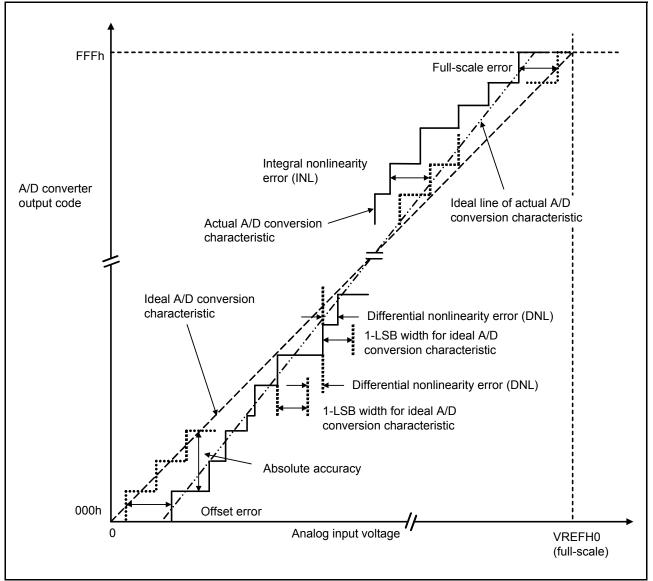


Figure 5.57 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

5.12 Usage Notes

5.12.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7- μ F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 5.63 to Figure 5.64 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of 0.1 μ F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 30, 12-Bit A/D Converter (S12ADb) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

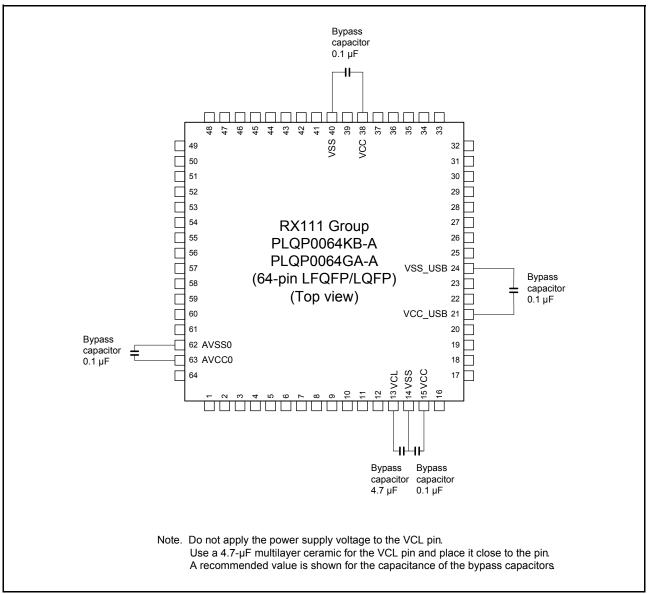


Figure 5.63Connecting Capacitors (64 Pins)

RENESAS

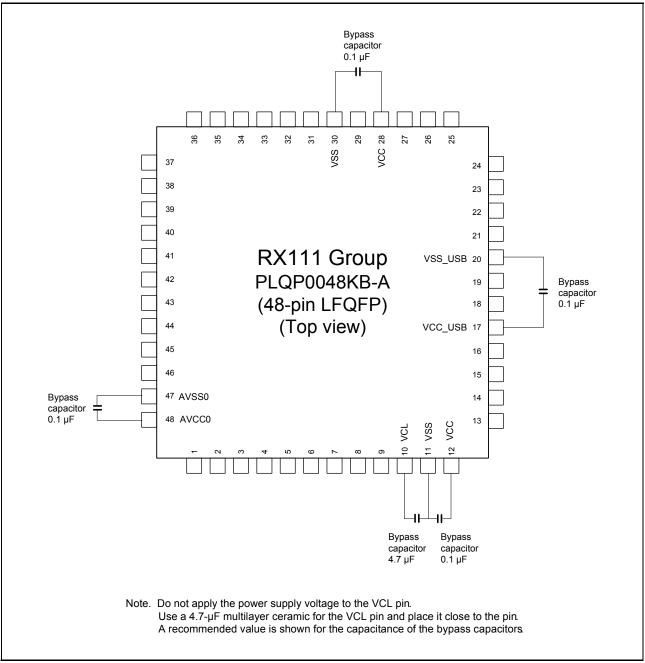


Figure 5.64 Connecting Capacitors (48-pin LFQFP)

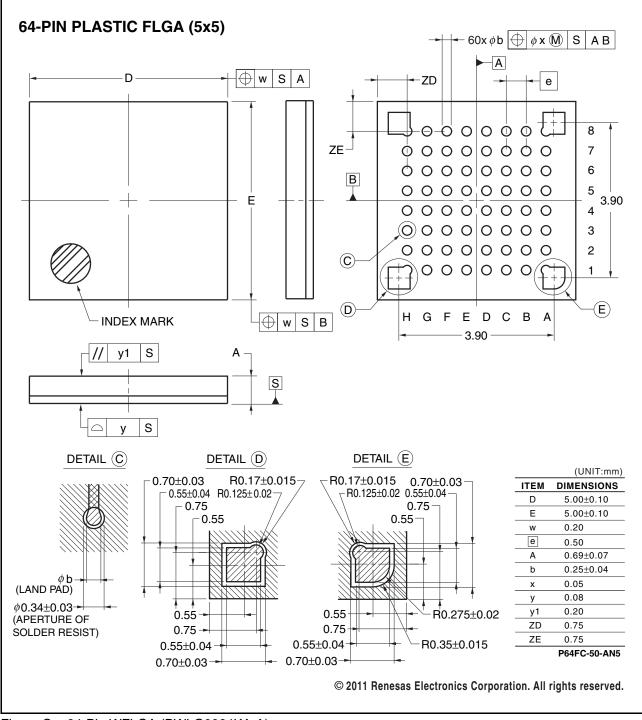


Figure C 64-Pin WFLGA (PWLG0064KA-A)

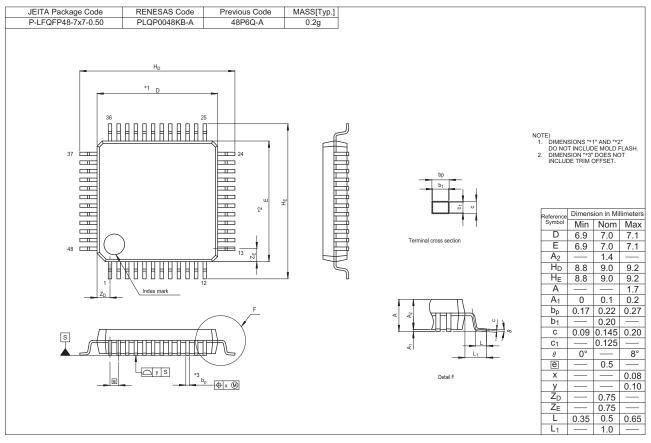


Figure D 48-Pin LFQFP (PLQP0048KB-A)

REVISION HISTORY

RX111 Group Datasheet

_	_		Description
Rev.	Date	Page	Summary
0.60	Apr 15, 2013		First edition, issued
0.90 May 15, 2013	Features		
	1	Changed	
	1. Overviev		
	2 to 4	Table 1.1 Outline of Specifications changed	
		10 to 12	Table 1.4 Pin Functions changed
		13	Figure 1.3 Pin Assignments of the 64-Pin LQFP changed
		14	Figure 1.4 Pin Assignments of the 64-Pin WFLGA changed
		15	Figure 1.5 Pin Assignments of the 48-Pin LQFP/HWQFN changed
		18, 19	Table 1.5 List of Pins and Pin Functions (64-Pin LQFP) changed, Note 1 added
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed, Note 1 added
		22, 23	Table 1.7 List of Pins and Pin Functions (48-Pin LQFP/HWQFN) changed, Note 1 added
		24, 25	Table 1.8 List of Pins and Pin Functions (40-Pin HWQFN) changed, Note 1 added
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed, Note 1 added
		4. I/O Regi	
		33 to 48	Table 5.1 List of I/O Registers (Address Order) changed
1.00	Jun 19. 2013	1. Overviev	
1.00 001110, 2010		9	Figure 1.2 Block Diagram changed
		20, 21	Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) changed
		26	Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA) changed
		4. I/O Regi	
		33 to 48	Table 4.1 List of I/O Registers (Address Order) changed
			al Characteristics
		49 to 99	Added
1.20	Sep 29, 2014	1. Overviev	
1.20	000 20, 2011	2 to 4	Table 1.1 Outline of Specifications: ROM capacity and RAM capacity changed, Unique ID added
		6, 7	Table 1.3 List of Products, changed
		8	Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type, changed
		9	Figure 1.2 Block Diagram changed
		10	Table 1.4 Pin Functions changed
		15	Figure 1.5 Pin Assignments of the 48-Pin LFQFP/HWQFN: Note added
		16	Figure 1.6 Pin Assignments of the 40-Pin HWQFN: Note added
		3. Address	
		30	Figure 3.1 Memory Map, changed
		4. I/O Regi	
		33 to 48	Table 4.1 List of I/O Registers (Address Order), changed
			al Characteristics
		49	Table 5.1 Absolute Maximum Ratings, Table 5.2 Recommended Operating Conditions, changed
		50	Table 5.3 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed
		50	Table 5.5 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed
		55, 56	Table 5.8 DC Characteristics (6), added
		56	Table 5.9 DC Characteristics (0), added
		58	Table 5.10 DC Characteristics (8), added
		59	Table 5.13 DC Characteristics (d), added
			Table 5.19 Output Values of Voltage (1) and Table 5.20 Output Values of Voltage (2), changed
		61	Table 5.22 Operation Frequency Value (Middle-Speed Operating Mode) changed,
		68	Note 4 added
		69	Table 5.24 Clock Timing, changed
		78	Table 5.32 Timing of On-Chip Peripheral Modules (1) changed
		81	Table 5.35 Timing of On-Chip Peripheral Modules (4), changed
		01	
		82	
			Table 5.36 Timing of On-Chip Peripheral Modules (5): Note 2 deleted Figure 5.37 SCK Clock Input Timing changed

