

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFLGA
Supplier Device Package	64-FLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51116adlf-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
	JSB 2.0 host/function module (USBc)	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host (32-Kbyte or more ROM)/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (On-The-Go) is supported. Isochronous transfer is supported. BC (Battery Charger) is supported.
12-bit A/D converter	(S12ADb)	 1 unit (1 unit × 14 channels) 12-bit resolution Minimum conversion time: 1.0 µs per channel when the ADCLK is operating at 32 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Double trigger mode (duplication of A/D conversion data) A/D conversion start conditions A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC
Temperature sensor	(TEMPSA)	 1 channel The voltage of the temperature is converted into a digital value by the 12-bit A/D converter.
D/A converter (DA)		 2 channels 8-bit resolution Output voltage: 0 V to VCC
CRC calculator (CRC	2)	 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1 Generation of CRC codes for use with LSB first or MSB first communications is selectable.
Data operation circui	t (DOC)	Comparison, addition, and subtraction of 16-bit data
Unique ID		32-byte ID code for the MCU
Power supply voltage	es/Operating frequencies	VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 3.6 V: 32 MHz
Supply current		3.2 mA at 32 MHz (typ.)
Operating temperatu	re range	D version: -40 to +85°C, G version: -40 to +105°C
Packages		64-pin LFQFP (PLQP0064KB-A) 10 × 10 mm, 0.5 mm pitch 64-pin LQFP (PLQP0064GA-A) 14 × 14 mm, 0.8 mm pitch 64-pin WFLGA (PWLG0064KA-A) 5 × 5 mm, 0.5 mm pitch 48-pin LFQFP (PLQP0048KB-A) 7 × 7 mm, 0.5 mm pitch 48-pin HWQFN (PWQN0048KB-A) 7 × 7 mm, 0.5 mm pitch 40-pin HWQFN (PWQN0040KC-A) 6 × 6 mm, 0.50 mm pitch 36-pin WFLGA (PWLG0036KA-A) 4 × 4 mm, 0.5 mm pitch
On-chip debugging s	system	E1 emulator (FINE interface)

Table 1.1Outline of Specifications (3/3)

1.4 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/3)

Classifications	Pin Name	I/O	Description					
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.					
	VCL	_	Connect this pin to the VSS pin via the 4.7 μ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.					
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).					
	VCC_USB	Input	Power supply pin for USB. Connect this pin to VCC.					
	VSS_USB	Input	Ground pin for USB. Connect this pin to VSS.					
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.					
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.					
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.					
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.					
Clock	XTAL	Output/ Input *1	Pins for connecting a crystal. An external clock can be input through the XTAL pin.					
	EXTAL	Input						
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal between					
	XCOUT	Output	- XCIN and XCOUT.					
	CLKOUT	Output	Clock output pin.					
Dperating mode control	MD	Input	Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.					
	UB#	Input	Pin used for boot mode (USB interface).					
	UPSEL	Input	Pin used for boot mode (USB interface).					
System control	RES#	Input	Reset pin. This MCU enters the reset state when this signal goes low.					
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.					
On-chip emulator	FINED	I/O	FINE interface pin.					
LVD	CMPA2	Input	Detection target voltage pin for voltage detection 2					
Interrupts	NMI	Input	Non-maskable interrupt request pin.					
	IRQ0 to IRQ7	Input	Interrupt request pins.					
Multi-function timer pulse unit 2	MTIOC0A, MTIOC0B MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.					
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.					
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.					
	MTIOC3A, MTIOC3B MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.					
	MTIOC4A, MTIOC4B MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.					
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.					
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.					
Port output enable 2	POE0# to POE3#, POE8#	Input	Input pins for request signals to place the MTU pins in the high impedance state.					

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.

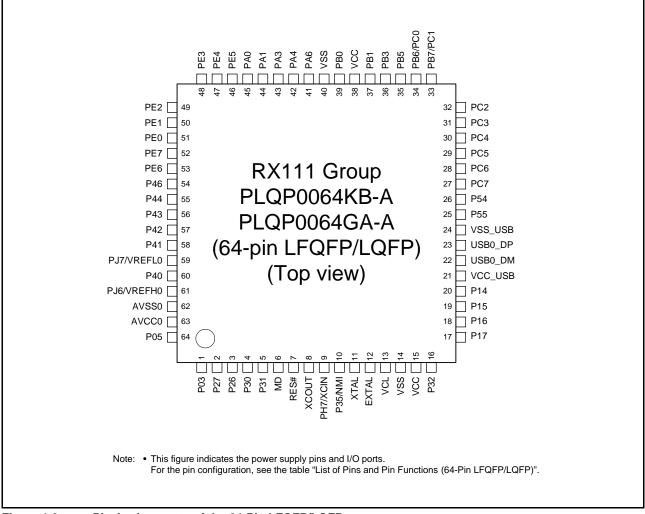
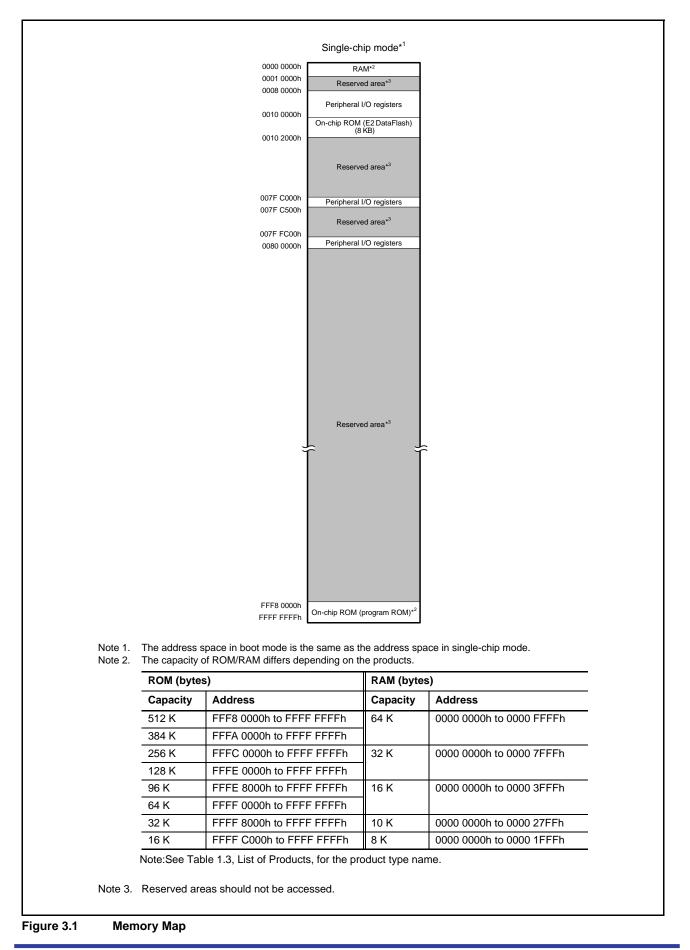


Figure 1.3 Pin Assignments of the 64-Pin LFQFP/LQFP



Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
		I/O Port	(MIU, POE, RIC)	(Scie, Scif, RSPI, Riic, USB)	Others
A1	AVSS0				
42	AVCC0	D 10*2			
43	VREFH0	PJ6*2			414000
A4		P42*2			AN002
A5		P41* ²			AN001
A6		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
31	RES#				
B2		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/CACREF/ ADTRG0#
33	VREFL0	PJ7*2			
34		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
B5		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
B6		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
C1	XTAL				
C2	MD				FINED
C3		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
C4		PE4	MTIOC1A/MTIOC3A/ MTIOC4D	MOSIA	IRQ4/AN012
C5		PA4	MTIOC2B/MTIC5U/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
C6	VSS				
D1	EXTAL				
D2	UPSEL	P35			NMI
D3	UB#	P14	MTIOC0A/MTIOC3A/ MTCLKA	CTS1#/RTS1#/SS1#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/ SSDA12/USB0_OVRCURA	IRQ4
D4		PA6	MTIC5V/MTCLKB/MTIOC2A/ POE2#	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
D5		PB3	MTIOC0A/MTIOC3B/ MTIOC4A/POE3#	USB0_OVRCURA	
D6		PB0	MTIOC0C/MTIC5W	SCL0/RSPCKA	IRQ2/ADTRG0#
Ξ1	VCL				
E2		P17	MTIOC0C/MTIOC3A/ MTIOC3B/POE8#	SCK1/MISOA/SDA0/RXD12/ RXDX12/SMISO12/SSCL12	IRQ7
E3		P16	MTIOC3C/MTIOC3D	TXD1/SMOSI1/SSDA1/SCL0/ MOSIA/USB0_VBUSEN/ USB0_OVRCURB/USB0_VBUS	IRQ6/ADTRG0#
E4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
E5		PC4	MTIOC3D/MTCLKC/POE0#	SCK5/SSLA0/USB0_VBUSEN/ USB0_VBUS*1	IRQ2/CLKOUT
E6	VCC				
=1	VSS				
F2	VCC				
F3	VCC_USB				
F4				USB0_DM	
-5				USB0_DP	
-6	VSS_USB				
	Not 5 V tolerant.				

 Table 1.9
 List of Pins and Pin Functions (36-Pin WFLGA)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

Table 4.1	List of I/O Registers (Address Order) (11/16)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Acces States
0008 B127h	ELC	Port Buffer Register 1	PDBF1	8	8	2 or 3 PCLKB
0008 B129h	ELC	Event Link Port Setting Register 0	PEL0	8	8	2 or 3 PCLKB
0008 B12Ah	ELC	Event Link Port Setting Register 1	PEL1	8	8	2 or 3 PCLKB
0008 B12Dh	ELC	Event Link Software Event Generation Register	ELSEGR	8	8	2 or 3 PCLKB
0008 B300h	SCI12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 B304h	SCI12	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 B306h	SCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
008 B309h	SCI12	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
008 B30Ah	SCI12	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
008 B30Bh	SCI12	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
008 B30Ch	SCI12	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
008 B320h	SCI12	Extended Serial Mode Enable Register	ESMER	8	8	2 or 3 PCLKB
008 B321h	SCI12	Control Register 0	CR0	8	8	2 or 3 PCLKB
008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB
008 B323h	SCI12	Control Register 2	CR2	8	8	2 or 3 PCLKB
	SCI12		CR3	8	8	
008 B324h		Control Register 3 Port Control Register	PCR			2 or 3 PCLKB
008 B325h	SCI12	Port Control Register		8	8	2 or 3 PCLKB
008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB
008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB
008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB
008 B329h	SCI12	Control Field 0 Data Register	CF0DR	8	8	2 or 3 PCLKB
008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CF0CR	8	8	2 or 3 PCLKB
008 B32Bh	SCI12	Control Field 0 Receive Data Register	CF0RR	8	8	2 or 3 PCLKB
008 B32Ch	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB
008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB
008 B32Eh	SCI12	Control Field 1 Compare Enable Register	CF1CR	8	8	2 or 3 PCLKB
008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB
008 B330h	SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB
008 B331h	SCI12	Timer Mode Register	TMR	8	8	2 or 3 PCLKB
008 B332h	SCI12	Timer Prescaler Register	TPRE	8	8	2 or 3 PCLKB
008 B333h	SCI12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB
008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB
008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	_	5.8		
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	_	VCC × 0.3		
	Other than RIIC input pin		-0.3	_	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	_	-		
	Other than RIIC input pin		VCC × 0.1	_	—		
Input voltage	MD	V _{IH}	VCC × 0.9		VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8		VCC + 0.3		
ingger input pins)	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1		VCC + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)	1	-0.3		VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)		-0.3	_	0.8		

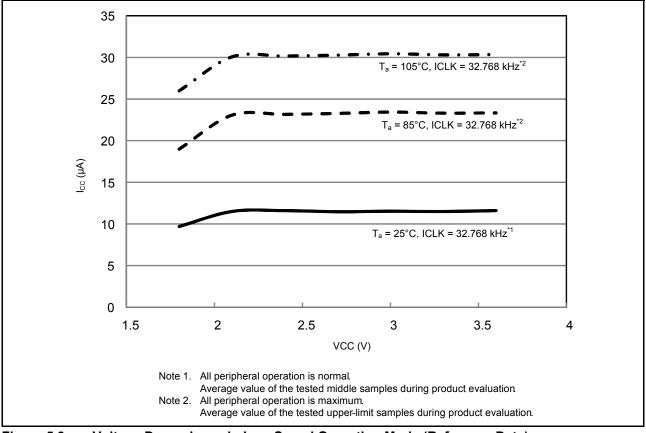


Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

[256-Kbyte or more flash memory]

Table 5.8DC Characteristics (6) (1/2)

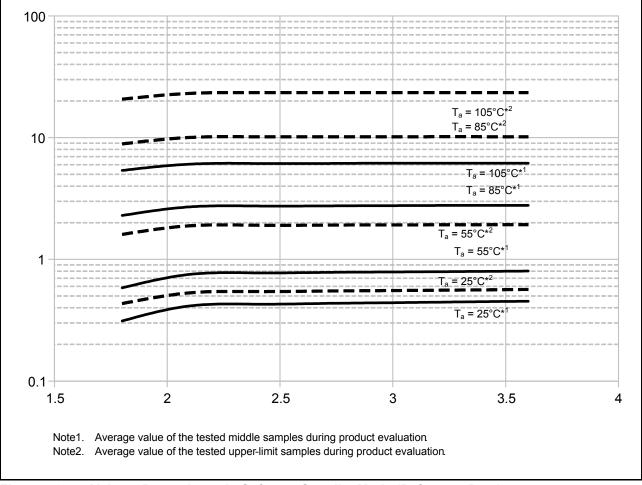
Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

			Item		Symbol	Typ *4	Max	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32 MHz	I _{CC}	3.6	_	mA	
current*1	operating mode	operating mode	operation*2	ICLK = 16 MHz		2.4	—		
	mode			ICLK = 8 MHz	-	1.8	_		
			All peripheral operation:	ICLK = 32 MHz		13.4	—		
			Normal* ³	ICLK = 16 MHz		7.5	—		
				ICLK = 8 MHz		4.5	—		
			All peripheral operation: Max.* ³	ICLK = 32 MHz		—	27		
		Sleep mode	No peripheral	ICLK = 32 MHz		1.9	—		
			operation*2	ICLK = 16 MHz		1.5	—		
				ICLK = 8 MHz		1.3	—		
			All peripheral operation:	ICLK = 32 MHz		7.6	—		
			Normal* ³	ICLK = 16 MHz		4.4	—		
				ICLK = 8 MHz		2.8	—		
		Deep sleep	No peripheral	ICLK = 32 MHz		1.1	—		
		mode	operation*2	ICLK = 16 MHz		1.0	—		
				ICLK = 8 MHz		0.9	—		
			All peripheral operation: Normal* ³	ICLK = 32 MHz		5.8	—		
				ICLK = 16 MHz		3.4	—		
				ICLK = 8 MHz		2.1	_		
		Increase duri	Increase during flash rewrite*5				—		
	Middle-speed		No peripheral	ICLK = 12 MHz	I _{CC}	2.1	—	mA	
	operating modes	operating mode	operation* ⁶	ICLK = 8 MHz		1.4	—		
	modes			ICLK = 1 MHz		0.8	—		
			All peripheral operation: Normal* ⁷	ICLK = 12 MHz		5.9	—		
				ICLK = 8 MHz		4.2	_		
				ICLK = 1 MHz		1.3	_		
			All peripheral operation: Max.* ⁷	ICLK = 12 MHz		—	12.2		
		Sleep mode		ICLK = 12 MHz	-	1.4	—	-	
			operation*6	ICLK = 8 MHz		0.9	—		
				ICLK = 1 MHz		0.7			
			All peripheral operation:	ICLK = 12 MHz		3.6	—	-	
			Normal* ⁷	ICLK = 8 MHz		2.5	—		
				ICLK = 1 MHz		1.1	—		
		Deep sleep	No peripheral	ICLK = 12 MHz]	1.1	—		
		mode	operation* ⁶	ICLK = 8 MHz	1 1	0.6	—		
				ICLK = 1 MHz	1	0.6	—		
			All peripheral operation:	ICLK = 12 MHz	1 1	2.9	—		
			Normal* ⁷	ICLK = 8 MHz		2.0	—		
				ICLK = 1 MHz		0.9	—		
		Incroaco duri	ng flash rewrite* ⁵		1 1	2.5	L	1	

[256-Kbyte or more flash memory]

Table 5.10DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$


Item			Symbol	Typ.* ³	Max.	Unit	Test Conditions
Supply current*1	Software standby	T _a = 25°C	I _{CC}	0.44	0.98	μA	
	mode*2	T _a = 55°C		0.80	3.47		
		T _a = 85°C		2.7	12.0		
		T _a = 105°C		6.17	42.7		
	Increment for RTC operation*4			0.31	_		RCR3.RTCDV[2:0] = 010b
				1.09			RCR3.RTCDV[2:0] = 100b
	Increment for IWD	T operation		0.37			

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The IWDT and LVD are stopped.

Note 3. VCC = 3.3 V.

Note 4. Includes the oscillation circuit.

Table 5.12 DC Characteristics (10)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.* ⁷	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	—	0.7	1.2	mA	
supply current	Waiting for A/D (all units)			—	0.3	μA	
	During D/A conversion (per channel)*5			—	1.5	mA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}		25	52	μA	
power supply current	Waiting for A/D conversion (all units)			—	60	nA	
Temperature sensor* ⁶		I _{TEMP}	—	75	-	μA	
LDV1, 2	Per channel	I _{LVD}	—	0.15	—	μA	
USB operating current	 During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port. 		_	4.3 (VCC) 0.9 (VCC_USB) *4	_	mA	
	 During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port. 	I _{USBF} *2		3.6 (VCC) 1.1 (VCC_USB) *4		mA	
	 During suspended state under the following setting and conditions Function controller operation is set to full-speed mode (pull up the USB0_DP pin) Software standby mode Connect the host device via a 1-meter USB cable from the USB port. 	I _{SUSP} *3		0.35 (VCC) 170 (VCC_USB) *4	_	μA	

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.
Note 2. Current consumed only by the USB module.
Note 3. Includes the current supplied from the pull-up resistor of the USB0_DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. The value of the current flowing to VCC.

Note 6. Current consumed by the power supply (VCC). Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

Table 5.13 DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8	—		V	

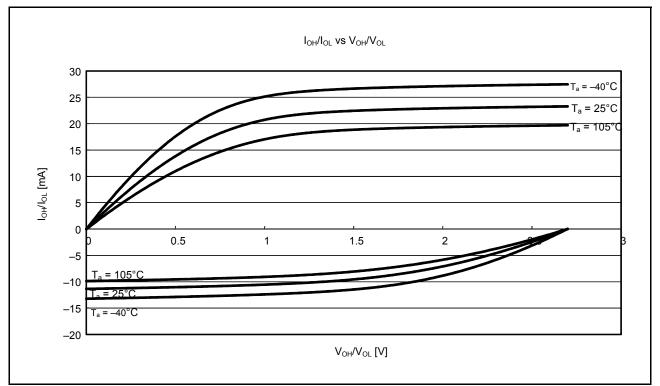


Figure 5.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 2.7 V (Reference Data)

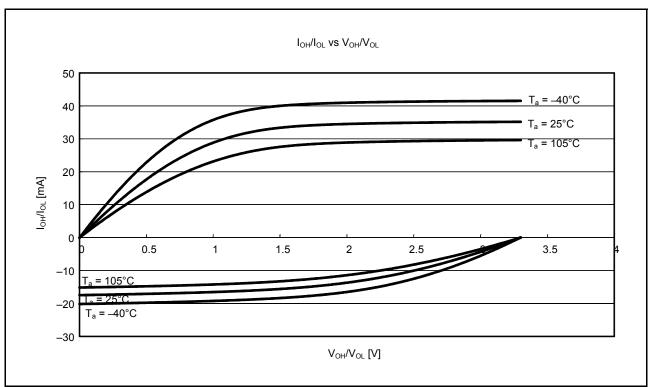


Figure 5.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 3.3 V (Reference Data)

RENESAS

5.3 AC Characteristics

5.3.1 Clock Timing

Table 5.21 Operation Frequency Value (High-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

			VCC					
Item		Symbol	1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V	When USB in Use*4	Unit	
Maximum operating	System clock (ICLK)	f _{max}	8	16	32	24	MHz	
frequency	FlashIF clock (FCLK)*1, *2		8	16	32	24		
	Peripheral module clock (PCLKB)		8	16	32	24		
	Peripheral module clock (PCLKD)*3		8	16	32	24		
	USB clock (UCLK)	f _{usb}	_	—	_	48		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use. Note 4. The VCC_USB range is 3.0 to 3.6 V when the USB clock is in use.

Table 5.22 Operation Frequency Value (Middle-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			VCC					
			1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V	When USB in Use*4	Unit	
Maximum operating	System clock (ICLK)	f _{max}	8	12	12	12	MHz	
frequency	FlashIF clock (FCLK)*1, *2		8	12	12	12		
	Peripheral module clock (PCLKB)		8	12	12	12		
	Peripheral module clock (PCLKD)*3		8	12	12	12		
	USB clock (UCLK)	f _{usb}	_	—	_	48		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be $\pm 3.5\%$.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.

Note 4. The VCC_USB range is 3.0 to 3.6 V when the USB clock is in use.

Table 5.23 Operation Frequency Value (Low-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item				Unit			
			1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V		
Maximum operating	System clock (ICLK)	f _{max}			kHz		
frequency	FlashIF clock (FCLK)*1						
Peripheral module clock (PCLKB) 32.76				32.768	68		
Peripheral module clock (PCLKD)*2 32.768							

Note 1. Programming and erasing the flash memory is impossible.

Note 2. The A/D converter cannot be used.

Table 5.33 Timing of On-Chip Peripheral Modules (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V},$ $T_a = -40$ to +105°C, C = 30 pF

		Item		Symbol	Min.	Max.	Unit	Test Conditions	
יו	RSPCK clock	Master		t _{SPcyc}	2	4096	t _{Pcyc}	Figure 5.46	
	cycle	Slave	Slave		8	4096	*1		
	RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns		
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	—			
	RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	—	ns		
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	_			
ſ	RSPCK clock	Output	2.7 V or above	t _{SPCKr,}	—	10	ns		
	rise/fall time		1.8 V or above	t _{SPCKf}	_	15			
		Input			_	1	μs		
Ī	Data input setup	Master	2.7 V or above	t _{SU}	10	_	ns	Figure 5.47 to	
	time		1.8 V or above		30	_		Figure 5.52	
		Slave			25 – t _{Pcyc}	_			
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t _H	t _{Pcyc}	_	ns		
			RSPCK set to PCLKB divided by 2	t _{HF}	0	_			
		Slave		t _H	20 + 2 × t _{Pcyc}	_			
Ē	SSL setup time	Master		t _{LEAD}	-30 + N*2 × t _{SPcyc}	_	ns	+	
		Slave			2	_	t _{Pcyc}	-	
Ē	SSL hold time	Master		t _{LAG}	–30 + N* ³ × t _{SPcyc}	_	ns	ĺ	
		Slave			2	_	t _{Pcyc}		
ſ	Data output delay	Master	2.7 V or above	t _{OD}	_	14	ns	t	
	time		1.8 V or above		_	30			
		Slave	2.7 V or above			3 × t _{Pcyc} + 65			
			1.8 V or above		_	3 × t _{Pcyc} +105			
ŀ	Data output hold	Master	2.7 V or above	t _{OH}	0		ns	Ť	
	time		1.8 V or above		-20		-		
		Slave			0	_			
f	Successive	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	t	
	transmission delay SI time		Slave		4 × t _{Pcyc}	_			
ſ	MOSI and MISO	Output 2.7 V or above 1.8 V or above Input Output Input		t _{Dr,} t _{Df}	_	10	ns	I	
	rise/fall time				— 20				
					_	1	μs		
ſ	SSL rise/fall time			t _{SSLr,}	_	20	ns	T	
				t _{SSLf}	_	1	μs		
ľ	Slave access time		2.7 V or above	t _{SA}	—	6	t _{Pcyc}	Figure 5.51,	
1.8 V or above			1.8 V or above		_	7		Figure 5.52	
Slave output release time 2.7 V or above			t _{REL}	_	5	t _{Pcyc}	1		
			1.8 V or above	1	_	6	•		

Note 1. t_{Pcyc}: PCLK cycle Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD) Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

Table 5.36 Timing of On-Chip Peripheral Modules (5)

Conditions: 2.7 V ≤ VCC = VCC_USB ≤ 3.6 V, 2.7 V ≤ AVSS0 ≤ 3.6 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB ≤ 32 MHz, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Max.	Unit	Test Conditions
Simple I ² C	SDA0 input rise time	t _{Sr}	—	1000	ns	Figure 5.53
(Standard mode)	SDA0 input fall time	t _{Sf}	—	300	ns	
	SDA0 input spike pulse removal time	t _{SP}	0	4 × t _{pcyc} *1	ns	
	Data input setup time	t _{SDAS}	250	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL0, SDA0 capacitive load	Cb	—	400	pF	
Simple I ² C	SCL0, SDA0 input rise time	t _{Sr}	—	300	ns	Figure 5.53
(Fast mode)	SCL0, SDA0 input fall time	t _{Sf}	—	300	ns	
	SCL0, SDA0 input spike pulse removal time	t _{SP}	0	4 × t _{pcyc} *1	ns	-
	Data input setup time	t _{SDAS}	100	_	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL0, SDA0 capacitive load	Cb	—	400	pF	

Note: • t_{Pcyc}: PCLK cycle Note 1. This applies when the SMR.CKS[1:0] bits = 00b and the SNFR.NFCS[2:0] bits = 010b while the SNFR.NFE bit = 1 and the digital filter is enabled.

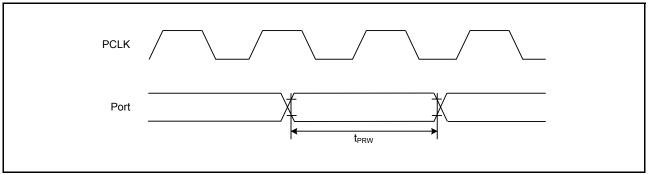


Figure 5.38 **I/O Port Input Timing**

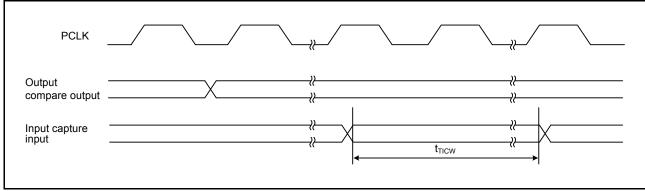
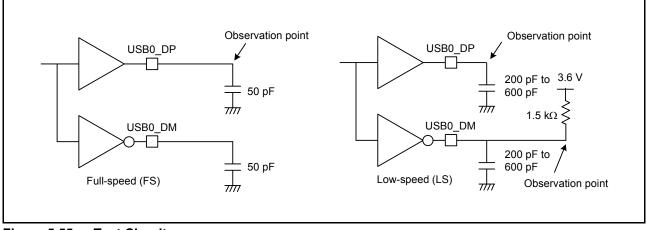



Figure 5.39 **MTU2** Input/Output Timing

5.8 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 5.58, Figure 5.59
	Voltage detection	V _{det1_4}	3.00	3.10	3.20	V	Figure 5.60
	circuit (LVD1)*1	V _{det1_5}	2.91	3.00	3.09		At falling edge VCC
		V _{det1_6}	2.81	2.90	2.99		
		V _{det1_7}	2.70	2.79	2.88		
		V _{det1_8}	2.60	2.68	2.76		
		V _{det1_9}	2.50	2.58	2.66		
		V _{det1_A}	2.40	2.48	2.56		
		V _{det1_B}	1.99	2.06	2.13		
		V _{det1_C}	1.90	1.96	2.02		
		V _{det1_D}	1.80	1.86	1.92		

Table 5.45 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 5.46 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Voltage detection circuit	V _{det2_0}	2.71	2.90	3.09	V	Figure 5.61
	(LVD2)* ¹	V _{det2_1}	2.43	2.60	2.77		At falling edge VCC
		V _{det2_2}	1.87	2.00	2.13		
		V _{det2_3} *2	1.69	1.80	1.91		
Wait time after power-on	At normal startup*3	t _{POR}	_	9.1	—	ms	Figure 5.59
reset cancellation	During fast startup time*4	t _{POR}	_	1.6	—		
Wait time after voltage monitoring 1 reset	Power-on voltage monitoring 1 reset disabled* ³	t _{LVD1}	_	568	—	μs	Figure 5.60
cancellation	Power-on voltage monitoring 1 reset enabled* ⁴		_	100	—		
Wait time after voltage mo	nitoring 2 reset cancellation	t _{LVD2}		100	—	μs	Figure 5.61
Response delay time		t _{det}	_	—	350	μs	Figure 5.58
Minimum VCC down time*	5	t _{VOFF}	350	—	—	μs	Figure 5.58, VCC = 1.0 V or above
Power-on reset enable tim	le	t _{W(POR)}	1	—	—	ms	Figure 5.59, VCC = below 1.0 V
LVD operation stabilization	n time (after LVD is enabled)	Td _(E-A)	_	—	300	μs	Figure 5.60, Figure 5.61
Hysteresis width (LVD1 ar	nd LVD2)	V _{LVH}	_	70	—	mV	Vdet1_4 selected
		_	60	—		Vdet1_5 to 9, LVD2 selected	
		_	50	—		When selection is from among Vdet1_A to B.	
		—	40	—		When selection is from among Vdet1_C to D.	

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.

Note 2. Vdet2_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.

Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 4. When OFS1.(STUPLVD1REN, FASTSTUP) ≠ 11b.

Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

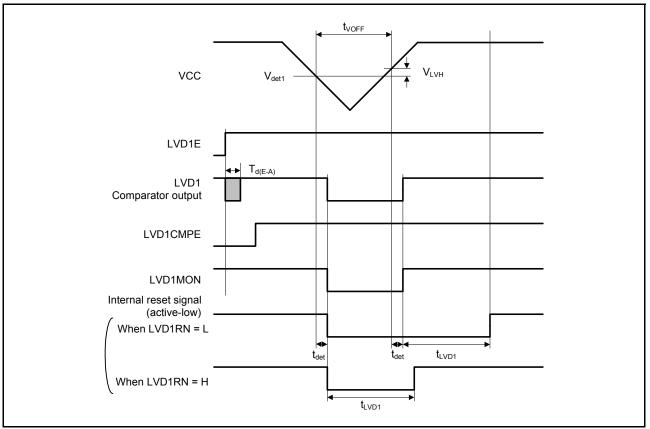


Figure 5.60 Voltage Detection Circuit Timing (V_{det1})

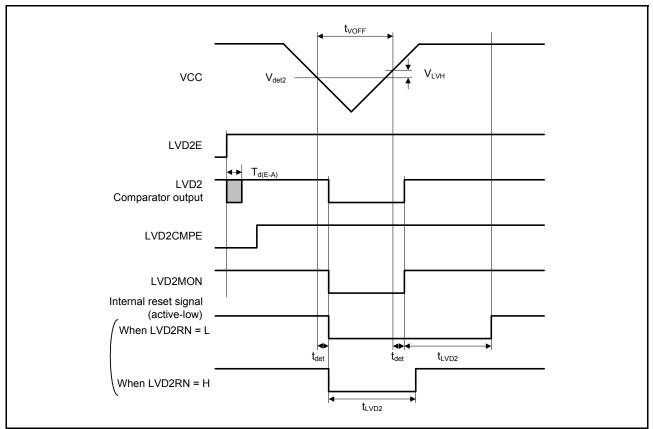


Figure 5.61 Voltage Detection Circuit Timing (V_{det2})

Rev.	Date		Description					
Rev.	Date	Page	Summary					
1.20	Sep 29, 2014	85	Figure 5.41 RSPI Clock Timing and Simple SPI Clock Timing, Figure 5.42 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 1) changed					
		86	Figure 5.43 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Divided by 2) added, Figure 5.44 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0) changed					
		87	Figure 5.45 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2) added, Figure 5.46 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1) changed					
		88	Figure 5.47 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0) changed					
		89	Table 5.37 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics) and Figure 5.49 USB0_DP and USB0_DM Output Timing, changed					
		90	Figure 5.50 Test Circuit, changed					
		91	Table 5.38 A/D Conversion Characteristics (1), Figure 5.51 AVCC0 to AVREFH0 Voltage Range, changed					
		92	Table 5.39 A/D Conversion Characteristics (2), Table 5.40 A/D Conversion Characteristics (3) changed					
		101	Table 5.49 ROM (Flash Memory for Code Storage) Characteristics (2) and Table 5.50 ROM (Flash Memory for Code Storage) Characteristics (3), changed					
		102	Table 5.52 E2 DataFlash Characteristics (2), Table 5.53 E2 DataFlash Characteristics (3) changed					
1.21	Dec 09, 2014	1. Overvie	W					
		2 to 4	Table 1.1 Outline of Specifications Unique ID, changed					
		5. Electrica	5. Electrical Characteristics					
		51	Table 5.3 DC Characteristics (1) and Table 5.4 DC Characteristics (2), changed					
		61	Table 5.19 Output Voltage (1) and Table 5.20 Output Voltage (2), changed					
		102	Table 5.52 E2 DataFlash Characteristics (2): high-speed operating mode and Table 5.53 E2DataFlash Characteristics (3): middle-speed operating mode, changed					

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄4 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.