

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51116adne-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		RX111 Group						
Module/Functio	ns	64 Pins	48 Pins	40 Pins	36 Pins			
Interrupts	External interrupts	NMI, IRQ0 to IRQ7						
DMA	Data transfer controller		Supp	orted				
Timers	Multi-function timer pulse unit 2		6 channels (M	TU0 to MTU5)				
	Port output enable 2	POE0# to PO	DE3#, POE8#	POE0#, POE2#,	POE3#, POE8#			
	Compare match timer		2 channe	ls x 1 unit				
	Realtime clock	Sup	ported	Not su	pported			
	Independent watchdog timer		Supp	orted				
Communication functions	Serial communications interfaces [simple I ² C, simple SPI]		2 channels	(SCI1, SCI5)				
	Serial communications interface [simple I ² C, simple SPI]	1 channel (SCI12)						
	I ² C bus interface	1 channel						
	Serial peripheral interface	1 channel	1 channel 1 channel (SSLA1 and SSLA3 are not supported)					
	USB 2.0 host/function module (USBc)	1 channel (Host/Function/ OTG)		1 channel (Host/Function)				
12-bit A/D conve (including high-p	rter recision channels)	14 channels (6 channels)	10 channels (4 channels)	8 channels (3 channels)	7 channels (2 channels)			
D/A converter		2 channels		Not supported				
Temperature sensor		Supported						
CRC calculator		Supported						
Event link controller		Supported						
Packages		64-pin LFQFP 64-pin LQFP 64-pin WFLGA	48-pin LFQFP 48-pin HWQFN	40-pin HWQFN	36-pin WFLGA			

Table 1.2 Comparison of Functions for Different Packages

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.

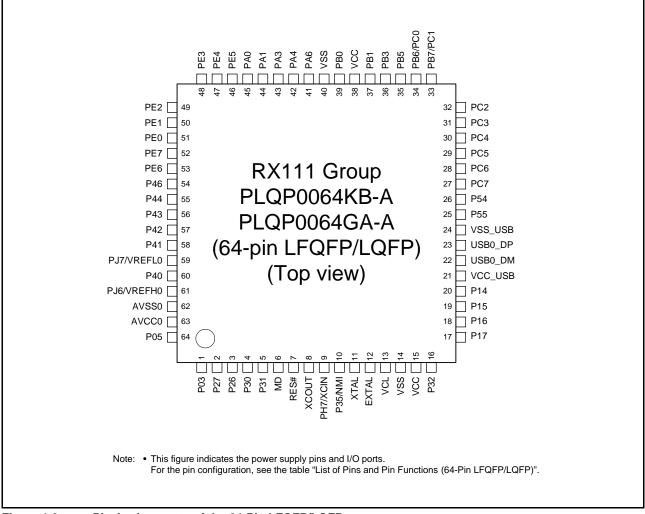


Figure 1.3 Pin Assignments of the 64-Pin LFQFP/LQFP

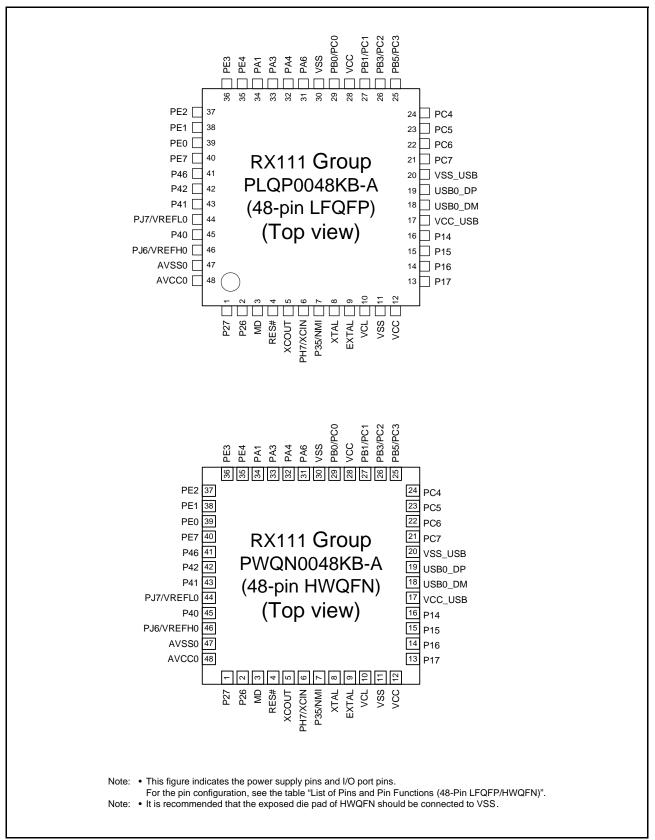


Figure 1.5 Pin Assignments of the 48-Pin LFQFP/HWQFN

RENESAS

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCle, SClf, RSPI, RIIC, USB)	Others
42		PA4	MTIC5U/MTCLKA/MTIOC2B	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
43		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
44		PA1	MTIOC0B/MTCLKC/ RTCOUT	SCK5/SSLA2	
45		PA0	MTIOC4A	SSLA1	CACREF
46		PE5	MTIOC4C/MTIOC2B		IRQ5/AN013
47		PE4	MTIOC4D/MTIOC1A/ MTIOC3A	MOSIA	IRQ4/AN012
48		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
49		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
50		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
51		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
52		PE7			IRQ7/AN015
53		PE6			IRQ6/AN014
54		P46*2			AN006
55		P44*2			AN004
56		P43* ²			AN003
57		P42* ²			AN002
58		P41* ²			AN001
59	VREFL0	PJ7* ²			
60		P40* ²			AN000
61	VREFH0	PJ6* ²			
62	AVSS0				
63	AVCC0				
64		P05			DA1
lote 1	Not 5 V tolerant				

 Table 1.5
 List of Pins and Pin Functions (64-Pin LFQFP/LQFP) (2/2)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

Table 4.1	List of I/O Registers (Address Order) (13/16)	
-----------	---	--

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Acces States
0008 C083h	PORT1	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C085h	PORT2	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C086h	PORT3	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C094h	PORTA	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C095h	PORTA	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C096h	PORTB	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C097h	PORTB	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C098h	PORTC	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C099h	PORTC	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C09Ch	PORTE	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C09Dh	PORTE	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C0C0h	PORT0	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0C1h	PORT1	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0C2h	PORT2	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0C3h	PORT3	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0C5h	PORT5	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CAh	PORTA	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CBh	PORTB	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 COCBI		Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 COCCH		Pull-Up Control Register	PCR			
	PORTE		PUR	8	8	2 or 3 PCLKB
008 C11Fh	MPC	Write-Protect Register		8	8	2 or 3 PCLKB
008 C120h	PORT	Port Switching Register B	PSRB	8	8	2 or 3 PCLKB
008 C121h	PORT	Port Switching Register A	PSRA	8	8	2 or 3 PCLKB
008 C143h	MPC	P03 Pin Function Control Register	P03PFS	8	8	2 or 3 PCLKB
008 C145h	MPC	P05 Pin Function Control Register	P05PFS	8	8	2 or 3 PCLKB
008 C14Ch	MPC	P14 Pin Function Control Register	P14PFS	8	8	2 or 3 PCLKB
008 C14Dh	MPC	P15 Pin Function Control Register	P15PFS	8	8	2 or 3 PCLKB
008 C14Eh	MPC	P16 Pin Function Control Register	P16PFS	8	8	2 or 3 PCLKB
008 C14Fh	MPC	P17 Pin Function Control Register	P17PFS	8	8	2 or 3 PCLKB
008 C156h	MPC	P26 Pin Function Control Register	P26PFS	8	8	2 or 3 PCLKB
008 C157h	MPC	P27 Pin Function Control Register	P27PFS	8	8	2 or 3 PCLKB
008 C158h	MPC	P30 Pin Function Control Register	P30PFS	8	8	2 or 3 PCLKB
008 C159h	MPC	P31 Pin Function Control Register	P31PFS	8	8	2 or 3 PCLKB
008 C15Ah	MPC	P32 Pin Function Control Register	P32PFS	8	8	2 or 3 PCLKB
008 C160h	MPC	P40 Pin Function Control Register	P40PFS	8	8	2 or 3 PCLKB
008 C161h	MPC	P41 Pin Function Control Register	P41PFS	8	8	2 or 3 PCLKB
008 C162h	MPC	P42 Pin Function Control Register	P42PFS	8	8	2 or 3 PCLKB
008 C163h	MPC	P43 Pin Function Control Register	P43PFS	8	8	2 or 3 PCLKB
008 C164h	MPC	P44 Pin Function Control Register	P44PFS	8	8	2 or 3 PCLKB
008 C166h	MPC	P46 Pin Function Control Register	P46PFS	8	8	2 or 3 PCLKB
008 C16Ch	MPC	P54 Pin Function Control Register	P54PFS	8	8	2 or 3 PCLKB
008 C16Ch	MPC	P55 Pin Function Control Register	P55PFS	8	8	2 or 3 PCLKB
	MPC	•				
008 C190h		PA0 Pin Function Control Register	PAOPES	8	8	2 or 3 PCLKB
008 C191h	MPC	PA1 Pin Function Control Register	PA1PFS	8	8	2 or 3 PCLKB
008 C193h	MPC	PA3 Pin Function Control Register	PA3PFS	8	8	2 or 3 PCLKB
008 C194h	MPC	PA4 Pin Function Control Register	PA4PFS	8	8	2 or 3 PCLKB
008 C196h	MPC	PA6 Pin Function Control Register	PA6PFS	8	8	2 or 3 PCLKB
008 C198h	MPC	PB0 Pin Function Control Register	PB0PFS	8	8	2 or 3 PCLKB
008 C199h	MPC	PB1 Pin Function Control Register	PB1PFS	8	8	2 or 3 PCLKB
008 C19Bh	MPC	PB3 Pin Function Control Register	PB3PFS	8	8	2 or 3 PCLKB
008 C19Dh	MPC	PB5 Pin Function Control Register	PB5PFS	8	8	2 or 3 PCLKB
008 C19Eh	MPC	PB6 Pin Function Control Register	PB6PFS	8	8	2 or 3 PCLKB

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C19Fh	MPC	PB7 Pin Function Control Register	PB7PFS	8	8	2 or 3 PCLKB
0008 C1A2h	MPC	PC2 Pin Function Control Register	PC2PFS	8	8	2 or 3 PCLKB
0008 C1A3h	MPC	PC3 Pin Function Control Register	PC3PFS	8	8	2 or 3 PCLKB
0008 C1A4h	MPC	PC4 Pin Function Control Register	PC4PFS	8	8	2 or 3 PCLKB
0008 C1A5h	MPC	PC5 Pin Function Control Register	PC5PFS	8	8	2 or 3 PCLKB
0008 C1A6h	MPC	PC6 Pin Function Control Register	PC6PFS	8	8	2 or 3 PCLKB
0008 C1A7h	MPC	PC7 Pin Function Control Register	PC7PFS	8	8	2 or 3 PCLKB
0008 C1B0h	MPC	PE0 Pin Function Control Register	PE0PFS	8	8	2 or 3 PCLKB
0008 C1B1h	MPC	PE1 Pin Function Control Register	PE1PFS	8	8	2 or 3 PCLKB
0008 C1B2h	MPC	PE2 Pin Function Control Register	PE2PFS	8	8	2 or 3 PCLKB
0008 C1B3h	MPC	PE3 Pin Function Control Register	PE3PFS	8	8	2 or 3 PCLKB
0008 C1B4h	MPC	PE4 Pin Function Control Register	PE4PFS	8	8	2 or 3 PCLKB
0008 C1B5h	MPC	PE5 Pin Function Control Register	PE5PFS	8	8	2 or 3 PCLKB
0008 C1B6h	MPC	PE6 Pin Function Control Register	PE6PFS	8	8	2 or 3 PCLKB
0008 C1B7h	MPC	PE7 Pin Function Control Register	PE7PFS	8	8	2 or 3 PCLKB
0008 C1D6h	MPC	PJ6 Pin Function Control Register	PJ6PFS	8	8	2 or 3 PCLKB
0008 C1D7h	MPC	PJ7 Pin Function Control Register	PJ7PFS	8	8	2 or 3 PCLKB
0008 C290h	SYSTEM	Reset Status Register 0	RSTSR0	8	8	4 or 5 PCLKB
0008 C291h	SYSTEM	Reset Status Register 1	RSTSR1	8	8	4 or 5 PCLKB
0008 C293h	SYSTEM	Main Clock Oscillator Forced Oscillation Control Register	MOFCR	8	8	4 or 5 PCLKB
0008 C297h	SYSTEM	Voltage Monitoring Circuit Control Register	LVCMPCR	8	8	4 or 5 PCLKB
0008 C298h	SYSTEM	Voltage Detection Level Select Register	LVDLVLR	8	8	4 or 5 PCLKB
0008 C29Ah	SYSTEM	Voltage Monitoring 1 Circuit Control Register 0	LVD1CR0	8	8	4 or 5 PCLKB
0008 C29Bh	SYSTEM	Voltage Monitoring 2 Circuit Control Register 0	LVD2CR0	8	8	4 or 5 PCLKB
0008 C400h	RTC	64-Hz Counter	R64CNT	8	8	2 or 3 PCLKB
0008 C402h	RTC	Second Counter	RSECCNT	8	8	2 or 3 PCLKB
0008 C402h	RTC	Binary Counter 0	BCNT0	8	8	2 or 3 PCLKB
0008 C404h	RTC	Minute Counter	RMINCNT	8	8	2 or 3 PCLKB
0008 C404h	RTC	Binary Counter 1	BCNT1	8	8	2 or 3 PCLKB
0008 C406h	RTC	Hour Counter	RHRCNT	8	8	2 or 3 PCLKB
0008 C406h	RTC	Binary Counter 2	BCNT2	8	8	2 or 3 PCLKB
0008 C408h	RTC	Day-Of-Week Counter	RWKCNT	8	8	2 or 3 PCLKB
0008 C408h	RTC	Binary Counter 3	BCNT3	8	8	2 or 3 PCLKB
0008 C40Ah	RTC	Date Counter	RDAYCNT	8	8	2 or 3 PCLKB
0008 C40Ch	RTC	Month Counter	RMONCNT	8	8	2 or 3 PCLKB
0008 C40Eh	RTC	Year Counter	RYRCNT	16	16	2 or 3 PCLKB
0008 C410h	RTC	Second Alarm Register	RSECAR	8	8	2 or 3 PCLKB
0008 C410h	RTC	Binary Counter 0 Alarm Register	BCNT0AR	8	8	2 or 3 PCLKB
0008 C412h	RTC	Minute Alarm Register	RMINAR	8	8	2 or 3 PCLKB
0008 C412h	RTC	Binary Counter 1 Alarm Register	BCNT1AR	8	8	2 or 3 PCLKB
0008 C414h	RTC	Hour Alarm Register	RHRAR	8	8	2 or 3 PCLKB
0008 C414h	RTC	Binary Counter 2 Alarm Register	BCNT2AR	8	8	2 or 3 PCLKB
0008 C416h	RTC	Day-of-Week Alarm Register	RWKAR	8	8	2 or 3 PCLKB
0008 C416h	RTC	Binary Counter 3 Alarm Register	BCNT3AR	8	8	2 or 3 PCLKB
0008 C418h	RTC	Date Alarm Register	RDAYAR	8	8	2 or 3 PCLKB
0008 C418h	RTC	Binary Counter 0 Alarm Enable Register	BCNT0AER	8	8	2 or 3 PCLKB
0008 C41Ah	RTC	Month Alarm Register	RMONAR	8	8	2 or 3 PCLKB
0008 C41Ah	RTC	Binary Counter 1 Alarm Enable Register	BCNT1AER	8	8	2 or 3 PCLKB
0008 C41Ch	RTC	Year Alarm Register	RYRAR	16	16	2 or 3 PCLKB
0008 C41Ch	RTC	Binary Counter 2 Alarm Enable Register	BCNT2AER	16	16	2 or 3 PCLKB
0008 C41Eh	RTC	Year Alarm Enable Register	RYRAREN	8	8	2 or 3 PCLKB
0000 041211						

Table 4.1 List of I/O Registers (Address Order) (14/16)

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	_	5.8		
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	_	VCC × 0.3		
	Other than RIIC input pin		-0.3	_	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	_	-		
	Other than RIIC input pin		VCC × 0.1	_	—		
Input voltage	MD	V _{IH}	VCC × 0.9		VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8		VCC + 0.3		
(ingger input pins)	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1		VCC + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)	1	-0.3		VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)		-0.3	_	0.8		

Table 5.7DC Characteristics (5) (2/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

	Item						Max	Unit	Test Conditions
·····	Normal	No peripheral operation*8	ICLK = 32.768 kHz	I _{CC}	4.0		μA		
	operating mode	All peripheral operation: Normal ^{*9, *10}	ICLK = 32.768 kHz		11.5	—			
			All peripheral operation: Max.* ^{9, *10}	ICLK = 32.768 kHz			40		
		Sleep mode	No peripheral operation*8	ICLK = 32.768 kHz		2.2	—		
			All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		7.1	—		
		Deep sleep	No peripheral operation*8	ICLK = 32.768 kHz		1.8	_		
		mode	All peripheral operation: Normal* ⁹	ICLK = 32.768 kHz		5.3			

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.

Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to divided by 64.

Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK = 12 MHz, and HOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.

Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

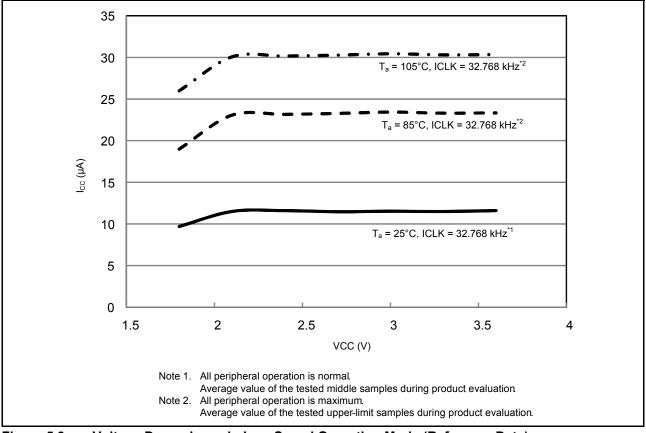


Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

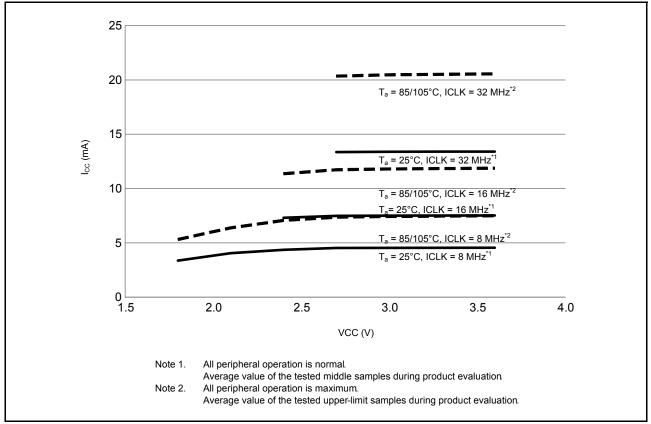
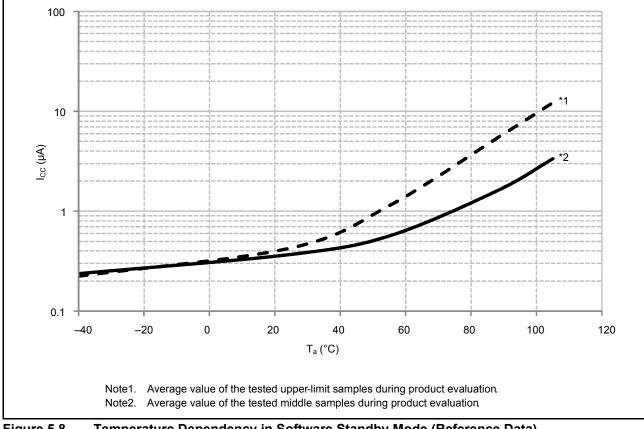



Figure 5.4 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Table 5.12 DC Characteristics (10)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.* ⁷	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	—	0.7	1.2	mA	
supply current	Waiting for A/D (all units)			—	0.3	μA	
	During D/A conversion (per channel)*5			—	1.5	mA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}		25	52	μA	
power supply current	Waiting for A/D conversion (all units)		_	—	60	nA	
Temperature sensor* ⁶		I _{TEMP}	—	75	-	μA	
LDV1, 2	Per channel	I _{LVD}	—	0.15	—	μA	
USB operating current	 During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port. 	I _{USBH} *2	_	4.3 (VCC) 0.9 (VCC_USB) *4	_	mA	
	 During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port. 	I _{USBF} *2	_	3.6 (VCC) 1.1 (VCC_USB) *4		mA	
	 During suspended state under the following setting and conditions Function controller operation is set to full-speed mode (pull up the USB0_DP pin) Software standby mode Connect the host device via a 1-meter USB cable from the USB port. 	I _{SUSP} *3		0.35 (VCC) 170 (VCC_USB) *4		μA	

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.
Note 2. Current consumed only by the USB module.
Note 3. Includes the current supplied from the pull-up resistor of the USB0_DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. The value of the current flowing to VCC.

Note 6. Current consumed by the power supply (VCC). Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

Table 5.13 DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8	—		V	

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item				Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software mode		Crystal Main clock oscillator connected to operating*2		t _{SBYMC}	_	2	3	ms	Figure 5.34
standby mode* ¹		main clock oscillator	Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms	
		External clock input to main	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs	
		clock oscillator	Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}		70	95	μs	
		Sub-clock oscillate	or operating	t _{SBYSC}	-	650	800	μs	
		HOCO clock oscill	lator operating*6	t _{SBYHO}	_	40	55	μs	
		LOCO clock oscill	ator operating	t _{SBYLO}	_	40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

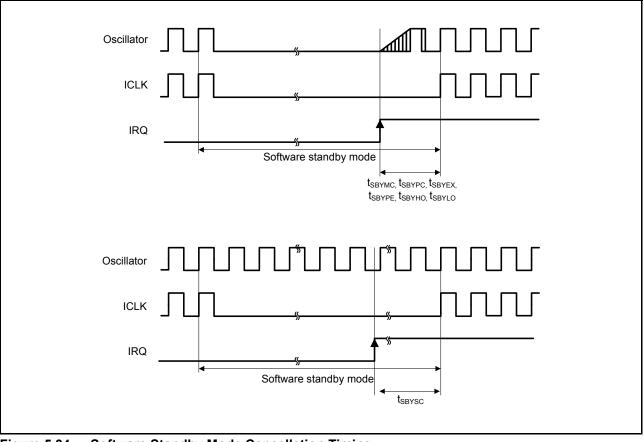


Figure 5.34 Software Standby Mode Cancellation Timing

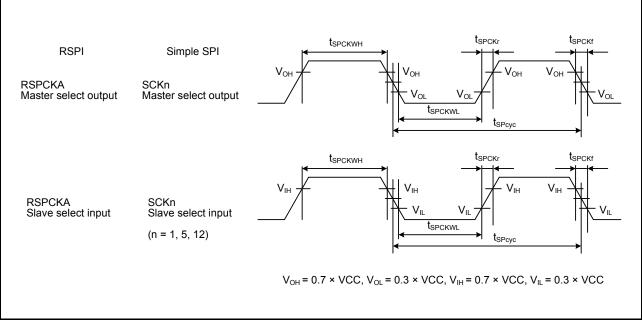
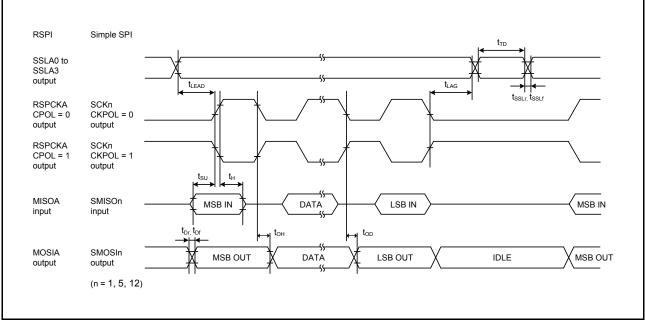



Figure 5.46 RSPI Clock Timing and Simple SPI Clock Timing

Table 5.39 A/D Conversion Characteristics (2)

Conditions: 2.4 V \leq VCC = VCC_USB \leq 3.6 V, 2.4 V \leq AVCC0 \leq 3.6 V, 2.4 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, T_a = -40 to +105°C

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		4	_	16	MHz	
Resolution		—	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 1.0 k Ω	2.062 (0.625)* ²	_	_	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h
		2.750 (1.313)* ²	_	—	μs	Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h
Analog input effective	range	0	_	VREFH0	V	
Offset error		—	±0.5	±6.0	LSB	
Full-scale error		—	±1.25	±6.0	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±3.0	±8.0	LSB	
DNL differential nonlin	nearity error	—	±1.0	—	LSB	
INL integral nonlinear	ity error	—	±1.5	±3.0	LSB	

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 5.40 A/D Conversion Characteristics (3)

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency Resolution		1		8 12	MHz	
					Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = 5.0 k Ω	4.875 (1.250)* ²	_	_	μs	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 09h
		6.250 (2.625)* ²	—	—		Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	_	VREFH0	V	
Offset error		—	±0.5	±24.0	LSB	
Full-scale error		—	±1.25	±24.0	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±2.75	±32.0	LSB	
DNL differential nonlinearity error		—	±1.0	—	LSB	
INL integral nonlinearity error		—	±1.25	±12.0	LSB	

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

5.9 Oscillation Stop Detection Timing

Table 5.47 Oscillation Stop Detection Circuit Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}	—	_	1	ms	Figure 5.62

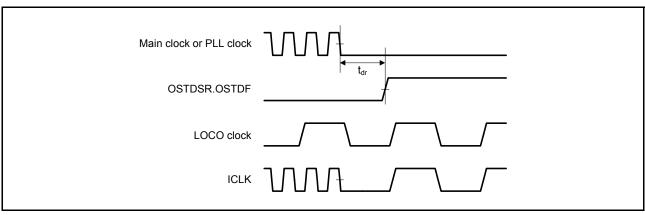


Figure 5.62 Oscillation Stop Detection Timing

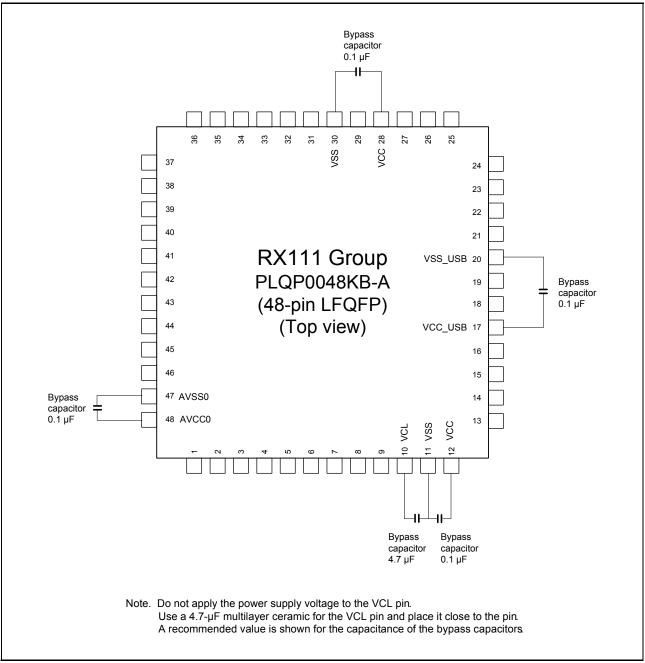


Figure 5.64 Connecting Capacitors (48-pin LFQFP)

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.