

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	384KB (384K × 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51117adfk-3a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		RX111 Group						
Module/Functio	ns	64 Pins	48 Pins	40 Pins	36 Pins			
Interrupts	External interrupts		NMI, IRQ	0 to IRQ7				
DMA	Data transfer controller		Supp	orted				
Timers	Multi-function timer pulse unit 2		6 channels (M	TU0 to MTU5)				
	Port output enable 2	POE0# to PC	DE3#, POE8#	POE0#, POE2#,	POE3#, POE8#			
	Compare match timer		2 channe	ls × 1 unit				
	Realtime clock	Supp	oorted	Not su	pported			
	Independent watchdog timer		Supp	orted				
Communication functions	Serial communications interfaces [simple I ² C, simple SPI]		2 channels (SCI1, SCI5)					
	Serial communications interface [simple I ² C, simple SPI]	1 channel (SCI12)						
	I ² C bus interface	1 channel						
	Serial peripheral interface	1 channel	1 cha (SSLA1 and SSLA3	1 channel (SSLA1 to SSLA3 are not supported)				
	USB 2.0 host/function module (USBc)	1 channel (Host/Function/ OTG)		1 channel (Host/Function)				
12-bit A/D conve (including high-p	rter recision channels)	14 channels (6 channels)	10 channels (4 channels)	8 channels (3 channels)	7 channels (2 channels)			
D/A converter		2 channels		Not supported				
Temperature sen	sor		Supp	orted				
CRC calculator		Supported						
Event link contro	ller	Supported						
Packages		64-pin LFQFP 64-pin LQFP 64-pin WFLGA	48-pin LFQFP 48-pin HWQFN	40-pin HWQFN	36-pin WFLGA			

Table 1.2 Comparison of Functions for Different Packages

Figure 1.1

How to Read the Product Part No., Memory Capacity, and Package Type

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.

Figure 1.3 Pin Assignments of the 64-Pin LFQFP/LQFP

 Table 1.7
 List of Pins and Pin Functions (48-Pin LFQFP/HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
39		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
40		PE7			IRQ7/AN015
41		P46* ²			AN006
42		P42* ²			AN002
43		P41* ²			AN001
44	VREFL0	PJ7*2			
45		P40* ²			AN000
46	VREFH0	PJ6* ²			
47	AVSS0				
48	AVCC0				

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to I/O registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

While writing to an I/O register, the CPU starts executing subsequent instructions before the I/O register write access is completed. This may cause the subsequent instructions to be executed before the write value is reflected in the operation. The examples below show how subsequent instructions must be executed after a write access to an I/O register is completed.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) set to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value in the I/O register and write it to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

Example of instructions

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

Address	Module Symbol	Register Name	Register Symbol	Register Number of Acc Symbol Bits Si		
0008 7343h	ICU	Interrupt Source Priority Register 067	IPR067	8	8	2 ICLK
0008 7344h	ICU	Interrupt Source Priority Register 068	IPR068	8	8	2 ICLK
0008 7345h	ICU	Interrupt Source Priority Register 069	IPR069	8	8	2 ICLK
0008 7346h	ICU	Interrupt Source Priority Register 070	IPR070	8	8	2 ICLK
0008 7347h	ICU	Interrupt Source Priority Register 071	IPR071	8	8	2 ICLK
0008 7358h	ICU	Interrupt Source Priority Register 088	IPR088	8	8	2 ICLK
0008 7359h	ICU	Interrupt Source Priority Register 089	IPR089	8	8	2 ICLK
0008 735Ah	ICU	Interrupt Source Priority Register 090	IPR090	8	8	2 ICLK
0008 735Ch	ICU	Interrupt Source Priority Register 092	IPR092	8	8	2 ICLK
0008 735Dh	ICU	Interrupt Source Priority Register 093	IPR093	8	8	2 ICLK
0008 7366h	ICU	Interrupt Source Priority Register 102	IPR102	8	8	2 ICLK
0008 7367h	ICU	Interrupt Source Priority Register 103	IPR103	8	8	2 ICLK
0008 736Ah	ICU	Interrupt Source Priority Register 106	IPR106	8	8	2 ICLK
0008 7372h	ICU	Interrupt Source Priority Register 114	IPR114	8	8	2 ICLK
0008 7376h	ICU	Interrupt Source Priority Register 118	IPR118	8	8	2 ICLK
0008 7379h	ICU	Interrupt Source Priority Register 121	IPR121	8	8	2 ICLK
0008 737Bh	ICU	Interrupt Source Priority Register 123	IPR123	8	8	2 ICLK
0008 737Dh	ICU	Interrupt Source Priority Register 125	IPR125	8	8	2 ICLK
0008 737Fh	ICU	Interrupt Source Priority Register 127	IPR127	8	8	2 ICLK
0008 7381h	ICU	Interrupt Source Priority Register 129	IPR129	8	8	2 ICLK
0008 7385h	ICU	Interrupt Source Priority Register 133	IPR133	8	8	2 ICLK
0008 7386h	ICU	Interrupt Source Priority Register 134	IPR134	8	8	2 ICLK
0008 738Ah	ICU	Interrupt Source Priority Register 138	IPR138	8	8	2 ICLK
0008 738Bh	ICU	Interrupt Source Priority Register 139	IPR139	8	8	2 ICLK
0008 73AAh	ICU	Interrupt Source Priority Register 170	IPR170	8	8	2 ICLK
0008 73ABh	ICU	Interrupt Source Priority Register 171	IPR171	8	8	2 ICLK
0008 73DAh	ICU	Interrupt Source Priority Register 218	IPR218	8	8	2 ICLK
0008 73DEh	ICU	Interrupt Source Priority Register 222	IPR222	8	8	2 ICLK
0008 73EEh	ICU	Interrupt Source Priority Register 238	IPR238	8	8	2 ICLK
0008 73F2h	ICU	Interrupt Source Priority Register 242	IPR242	8	8	2 ICLK
0008 73F3h	ICU	Interrupt Source Priority Register 243	IPR243	8	8	2 ICLK
0008 73F4h	ICU	Interrupt Source Priority Register 244	IPR244	8	8	2 ICLK
0008 73F5h	ICU	Interrupt Source Priority Register 245	IPR245	8	8	2 ICLK
0008 73F6h	ICU	Interrupt Source Priority Register 246	IPR246	8	8	2 ICLK
0008 73F7h	ICU	Interrupt Source Priority Register 247	IPR247	8	8	2 ICLK
0008 73F8h	ICU	Interrupt Source Priority Register 248	IPR248	8	8	2 ICLK
0008 73F9h	ICU	Interrupt Source Priority Register 249	IPR249	8	8	2 ICLK
0008 7500h	ICU	IRQ Control Register 0	IRQCR0	8	8	2 ICLK
0008 7501h	ICU	IRQ Control Register 1	IRQCR1	8	8	2 ICLK
0008 7502h	ICU	IRQ Control Register 2	IRQCR2	8	8	2 ICLK
0008 7503h	ICU	IRQ Control Register 3	IRQCR3	8	8	2 ICLK
0008 7504h	ICU	IRQ Control Register 4	IRQCR4	8	8	2 ICLK
0008 7505h	ICU	IRQ Control Register 5	IRQCR5	8	8	2 ICLK
0008 7506h	ICU	IRQ Control Register 6	IRQCR6	8	8	2 ICLK
0008 7507h	ICU	IRQ Control Register 7	IRQCR7	8	8	2 ICLK
0008 7510h	ICU	IRQ Pin Digital Filter Enable Register 0	IRQFLTE0	8	8	2 ICLK
0008 7514h	ICU	IRQ Pin Digital Filter Setting Register 0	IRQFLTC0	16	16	2 ICLK
0008 7580h	ICU	Non-Maskable Interrupt Status Register	NMISR	8	8	2 ICLK
0008 7581h	ICU	Non-Maskable Interrupt Enable Register	NMIER	8	8	2 ICLK
0008 7582h	ICU	Non-Maskable Interrupt Status Clear Register	NMICLR	8	8	2 ICLK
0008 7583h	ICU	NMI Pin Interrupt Control Register	NMICR	8	8	2 ICLK
0008 7590h	ICU	NMI Pin Digital Filter Enable Register	NMIFLTE	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (5/16)

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	—	5.8		
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	—	VCC × 0.3		
	Other than RIIC input pin		-0.3	—	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	—	—		
	Other than RIIC input pin		VCC × 0.1	—	—		
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
(except for Schmitt	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1	_	VCC + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)	1	-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)		-0.3		0.8		

Table 5.4DC Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} < 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports P16, P17, port PA6, port PB0 (5 V tolerant)	V _{IH}	VCC × 0.8	—	5.8	V	
	Ports P03, P05, ports P14,P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PE0 to PE7, port PH7, RES#		VCC × 0.8		VCC + 0.3		
	All pins		-0.3	—	VCC × 0.2		
	All pins	ΔV_T	VCC × 0.01	—	—		
Input voltage	MD	V _{IH}	VCC × 0.9	—	VCC + 0.3	V	
(except for Schmitt	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
trigger input pins)	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	MD	V _{IL}	-0.3	—	VCC × 0.1		
	XTAL (external clock input)		-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		

Table 5.5DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leakage current	RES#, MD, port P35, port PH7	I _{in}	—	—	1.0	μA	V _{in} = 0 V, VCC
Three-state	Ports for 5 V tolerant	I _{TSI}	—	—	1.0	μA	V _{in} = 0 V, 5.8 V
leakage current (off-state)	Pins other than above		—	—	1.0		V _{in} = 0 V, VCC
Input capacitance	All input pins (except for port P16, port P35, USB0_DM, USB0_DP)	C _{in}	—	_	15	рF	$V_{in} = 0 \text{ mV},$ Frequency: 1 MHz, $T_a = 25^{\circ}C$
	Port P16, port P35, USB0_DM, USB0_DP		_	—	30		

Table 5.6DC Characteristics (4)

```
Conditions: 1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}
```

Item			Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for port P35, port PH7)	R _U	10	20	100	kΩ	V _{in} = 0 V

[256-Kbyte or more flash memory]

Table 5.8DC Characteristics (6) (1/2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}$

	Item						Max	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32 MHz	I _{CC}	3.6	-	mA	
current*1	operating	operating	operation*2	ICLK = 16 MHz		2.4			
	modo	mouo		ICLK = 8 MHz		1.8	_		
			All peripheral operation:	ICLK = 32 MHz		13.4			
			Normal* ³	ICLK = 16 MHz		7.5			
				ICLK = 8 MHz		4.5	—		
			All peripheral operation: Max.* ³	ICLK = 32 MHz		—	27		
		Sleep mode	No peripheral	ICLK = 32 MHz		1.9	_		
			operation*2	ICLK = 16 MHz	-	1.5	_		
				ICLK = 8 MHz	-	1.3	_		
		Deep sleep	All peripheral operation:	ICLK = 32 MHz	-	7.6	_		
			Normal*3	ICLK = 16 MHz	-	4.4	_		
				ICLK = 8 MHz	-	2.8	_		
			No peripheral	ICLK = 32 MHz	-	1.1	_		
		mode	operation*2	ICLK = 16 MHz		1.0	_		
				ICLK = 8 MHz	-	0.9	_		
			All peripheral operation:	ICLK = 32 MHz	-	5.8	_		
			Normal* ³	ICLK = 16 MHz	-	3.4	_		
				ICLK = 8 MHz	-	2.1	_		
		Increase duri	ng flash rewrite* ⁵		-	2.5	_		
	Middle-speed Normal	Normal	No peripheral	ICLK = 12 MHz	lee	2.1	_	mA	
	operating	operating	operation*6	ICLK = 8 MHz		1.4	_		
	modes	odes mode		ICI K = 1 MHz	-	0.8	_		
			All peripheral operation:	ICI K = 12 MHz		5.9	_		
			Normal* ⁷			42	_		
						1.3			
			All peripheral operation: Max.* ⁷	ICLK = 12 MHz		_	12.2		
		Sleep mode	No peripheral	ICLK = 12 MHz	1	1.4	_		
			operation*6	ICLK = 8 MHz	-	0.9	_		
				ICLK = 1 MHz	-	0.7	_		
			All peripheral operation:	ICLK = 12 MHz		3.6	_		
			Normal*7	ICLK = 8 MHz		2.5	_		
				ICLK = 1 MHz		1.1	_		
		Deep sleep	No peripheral	ICLK = 12 MHz	-	1.1	_		
		mode	operation*6	ICLK = 8 MHz	1	0.6	<u> </u>		
				ICLK = 1 MHz	1	0.6	<u> </u>		
			All peripheral operation:	ICLK = 12 MHz	1	2.9			
			Normal*7	ICLK = 8 MHz	┥	2.0			
				ICLK = 1 MHz	1	0.9	_		
		Increase duri	ng flash rewrite* ⁵	1	1	2.5	_		

Table 5.12 DC Characteristics (10)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.* ⁷	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	_	0.7	1.2	mA	
supply current	Waiting for A/D (all units)		—	—	0.3	μA	
	During D/A conversion (per channel)*5			—	1.5	mA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}		25	52	μA	
power supply current	Waiting for A/D conversion (all units)		_	—	60	nA	
Temperature sensor* ⁶		I _{TEMP}	—	75	—	μA	
LDV1, 2	Per channel	I _{LVD}	—	0.15	—	μA	
USB operating current	 During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port. 	I _{USBH} *2	_	4.3 (VCC) 0.9 (VCC_USB) *4		mA	
	 During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port. 	I _{USBF} *2	_	3.6 (VCC) 1.1 (VCC_USB) *4		mA	
	 During suspended state under the following setting and conditions Function controller operation is set to full-speed mode (pull up the USB0_DP pin) Software standby mode Connect the host device via a 1-meter USB cable from the USB port. 	I _{SUSP} *3		0.35 (VCC) 170 (VCC_USB) *4		μA	

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.
Note 2. Current consumed only by the USB module.
Note 3. Includes the current supplied from the pull-up resistor of the USB0_DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. The value of the current flowing to VCC.

Note 6. Current consumed by the power supply (VCC). Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

Table 5.13DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8	—	-	V	

Table 5.19Output Voltage (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Min.	Max.	Unit	Test Conditions	
Low-level	All output ports		V _{OL}	—	0.6	V	I _{OL} = 3.0 mA	
output voltage	(except for RIIC, po ports PJ6, PJ7)		—	0.4		I _{OL} = 1.5 mA		
	Ports P40 to P44, P46, ports PJ6, PJ7			—	0.4		I _{OL} = 0.4 mA	
	RIIC pins	C pins Standard mode		—	0.4		I _{OL} = 3.0 mA	
		Fast mode		—	0.6		I _{OL} = 6.0 mA	
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)		V _{OH}	VCC - 0.5	_	V	I _{OH} = -2.0 mA	
	Ports P40 to P44, P		AVCC0 - 0.5	—		I _{OH} = -0.1 mA		

Table 5.20Output Voltage (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Max.	Unit	Test Conditions
Low-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OL}		0.6	V	I _{OL} = 1.5 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		_	0.4		I _{OL} = 0.4 mA
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OH}	VCC - 0.5	-	V	I _{OH} = -1.0 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 - 0.5	_		I _{OH} = -0.1 mA

Figure 5.21 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 2.7 V (Reference Data)

Figure 5.22 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Ports P40 to P44, P46, Ports PJ6, PJ7 at VCC = 3.3 V (Reference Data)

RENESAS

Table 5.34 Timing of On-Chip Peripheral Modules (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $T_a = -40 \text{ to } +105^{\circ}\text{C}$, C = 30 pF

Item		Symbol	Min.	Max.	Unit*1	Test Conditions	
Simple	e SCK clock cycle output (master)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 5.46
SPI	SCK clock cycle input (slave)			6	65536		
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time		t _{SPCKr} , t _{SPCKf}	_	20	ns	
	Data input setup time (master)	2.7 V or above	t _{SU}	65	—	ns	Figure 5.47, Figure 5.49
		1.8 V or above		95	—		
	Data input setup time (slave)		40	_			
	Data input hold time	t _H	40	—	ns		
	SS input setup time SS input hold time Data output delay time (master)		t _{LEAD}	3	_	t _{Pcyc}	
			t _{LAG}	3	_	t _{Pcyc}	
			t _{OD}	—	40	ns	
	Data output delay time (slave)	2.7 V or above		—	65		
		1.8 V or above		—	85		
	Data output hold time (master)	2.7 V or above	t _{ОН}	-10	_	ns	
		1.8 V or above		-20	—		
	Data output hold time (slave)		-10	—			
	Data rise/fall time	t _{Dr,} t _{Df}		20	ns		
	SS input rise/fall time	t _{SSLr,} t _{SSLf}		20	ns		
	Slave access time	t _{SA}	_	6	t _{Pcyc}	Figure 5.51,	
	Slave output release time		t _{REL}		6	t _{Pcyc}	Figure 5.52

Note 1. t_{Pcyc} : PCLK cycle

Figure 5.56 AVCC0 to AVREFH0 Voltage Range

5.8 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

					= α			
Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Voltage detection level	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 5.58, Figure 5.59	
	Voltage detection circuit (LVD1)*1	V _{det1_4}	3.00	3.10	3.20	V	Figure 5.60 At falling edge VCC	
		V _{det1_5}	2.91	3.00	3.09			
		V _{det1_6}	2.81	2.90	2.99			
		V _{det1_7}	2.70	2.79	2.88			
		V _{det1_8}	2.60	2.68	2.76			
		V _{det1_9}	2.50	2.58	2.66			
		V _{det1_A}	2.40	2.48	2.56			
		V _{det1_B}	1.99	2.06	2.13			
		V _{det1_C}	1.90	1.96	2.02			
		V _{det1_D}	1.80	1.86	1.92			

Table 5.45 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 5.46 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Voltage detection level	Voltage detection circuit	V _{det2_0}	2.71	2.90	3.09	V	Figure 5.61 At falling edge VCC	
	(LVD2)*1	V _{det2_1}	2.43	2.60	2.77			
		V _{det2_2}	1.87	2.00	2.13			
		V _{det2_3} *2	1.69	1.80	1.91			
Wait time after power-on	At normal startup*3	t _{POR}		9.1	—	ms	Figure 5.59	
reset cancellation	During fast startup time*4	t _{POR}		1.6	—			
Wait time after voltage monitoring 1 reset	Power-on voltage monitoring 1 reset disabled* ³	t _{LVD1}	—	568	—	μs	Figure 5.60	
cancellation	Power-on voltage monitoring 1 reset enabled* ⁴		—	100	—			
Wait time after voltage mo	nitoring 2 reset cancellation	t _{LVD2}		100	—	μs	Figure 5.61	
Response delay time		t _{det}		_	350	μs	Figure 5.58	
Minimum VCC down time*5		t _{VOFF}	350	—	—	μs	Figure 5.58, VCC = 1.0 V or above	
Power-on reset enable time		t _{W(POR)}	1	—	—	ms	Figure 5.59, VCC = below 1.0 V	
LVD operation stabilization time (after LVD is enabled)		Td _(E-A)		_	300	μs	Figure 5.60, Figure 5.61	
Hysteresis width (LVD1 and LVD2)		V _{LVH}		70	—	mV	Vdet1_4 selected	
		_	60	—		Vdet1_5 to 9, LVD2 selected		
			_	50		—	When selection is from among Vdet1_A to B.	
		—	40	—		When selection is from among Vdet1_C to D.		

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.

Note 2. Vdet2_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.

Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 4. When OFS1.(STUPLVD1REN, FASTSTUP) ≠ 11b.

Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

Table 5.50 ROM (Flash Memory for Code Storage) Characteristics (3)

Middle-speed operating mode Conditions: 1.8 V ≤ VCC ≤ 3.6 V, 1.8 V ≤ AVSS0 ≤ 3.6 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FCLK = 1 MHz				Lloit		
			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time 4-byte		t _{P4}	—	143	1330	—	96.8	932	μs
Erasure time	1-Kbyte	t _{E1K}	_	8.3	269	—	5.85	219	ms
	256-Kbyte	t _{E256K}	_	407	928	—	93	520	ms
Blank check time	4-byte	t _{BC4}	_	_	78	—	_	50	μs
	1-Kbyte	t _{BC1K}	_		1.61	—		0.369	ms
Erase operation forcible stop time		t _{SED}	_		33.6	—		25.6	μs
Start-up area switching setting time		t _{SAS}	_	13.2	549	—	7.6	445	ms
Access window time		t _{AWS}	_	13.2	549	—	7.6	445	ms
ROM mode transition wait time 1		t _{DIS}	2			2		_	μs
ROM mode transition wait time 2		t _{MS}	3			3			μs

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: • The frequency accuracy of FCLK should be ±3.5%. Confirm the frequency accuracy of the clock source.

Figure C 64-Pin WFLGA (PWLG0064KA-A)

Figure E 48-Pin HWQFN (PWQN0048KB-A)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

- 9. Refresses Electronics products and technology may not be used to or incorporated into any products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or products or system's whose manuacute, use, or sale is promoted under any applicable duries of the eight and or or during but not limited to the development of waspons of mass destruction. When exporting the Renessas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong rong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice