

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f5111jadlm-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/3)

Classifications	Pin Name	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.
	VCL	_	Connect this pin to the VSS pin via the 4.7 μ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
	VCC_USB	Input	Power supply pin for USB. Connect this pin to VCC.
	VSS_USB	Input	Ground pin for USB. Connect this pin to VSS.
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
Clock	XTAL	Output/ Input *1	Pins for connecting a crystal. An external clock can be input through the XTAL pin.
	EXTAL	Input	
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal between
	XCOUT	Output	XCIN and XCOUT.
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.
	UB#	Input	Pin used for boot mode (USB interface).
	UPSEL	Input	Pin used for boot mode (USB interface).
System control	RES#	Input	Reset pin. This MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.
On-chip emulator	FINED	I/O	FINE interface pin.
LVD	CMPA2	Input	Detection target voltage pin for voltage detection 2
Interrupts	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ7	Input	Interrupt request pins.
Multi-function timer pulse unit 2	MTIOC0A, MTIOC0B MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.
	MTIOC3A, MTIOC3B MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.
	MTIOC4A, MTIOC4B MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.
Port output enable 2	POE0# to POE3#, POE8#	Input	Input pins for request signals to place the MTU pins in the high impedance state.

Figure 1.6 Pin Assignments of the 40-Pin HWQFN

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others
42		PA4	MTIC5U/MTCLKA/MTIOC2B	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
43		PA3	MTIOC0D/MTCLKD/ MTIOC1B/POE0#	RXD5/SMISO5/SSCL5/MISOA	IRQ6
44		PA1	MTIOC0B/MTCLKC/ RTCOUT	SCK5/SSLA2	
45		PA0	MTIOC4A	SSLA1	CACREF
46		PE5	MTIOC4C/MTIOC2B		IRQ5/AN013
47		PE4	MTIOC4D/MTIOC1A/ MTIOC3A	MOSIA	IRQ4/AN012
48		PE3	MTIOC0A/MTIOC1B/ MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
49		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
50		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
51		PE0	MTIOC2A/POE3#	SCK12	IRQ0/AN008
52		PE7			IRQ7/AN015
53		PE6			IRQ6/AN014
54		P46* ²			AN006
55		P44*2			AN004
56		P43* ²			AN003
57		P42* ²			AN002
58		P41* ²			AN001
59	VREFL0	PJ7* ²			
60		P40* ²			AN000
61	VREFH0	PJ6* ²			
62	AVSS0				
63	AVCC0				
64		P05			DA1

 Table 1.5
 List of Pins and Pin Functions (64-Pin LFQFP/LQFP) (2/2)

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

Table 1.8List of Pins and Pin Functions (40-Pin HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, POE, RTC)	Communication (SCIe, SCIf, RSPI, RIIC, USB)	Others	
40	AVCC0					

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCCO.

2.1 General-Purpose Registers (R0 to R15)

This CPU has 16 general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

2.2 Control Registers

(1) Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).

Set the ISP or USP to a multiple of 4, as this reduces the numbers of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(2) Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

(3) Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

(4) Processor Status Word (PSW)

The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.

(5) Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.

(6) Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.

After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

(7) Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a branch destination address when a fast interrupt has been generated.

2.3 Register Associated with DSP Instructions

(1) Accumulator (ACC)

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and multiply-and-accumulate instructions; EMUL, EMULU, MUL, and RMPA, in which case the prior value in the accumulator is modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively. Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

Table 4.1	List of I/O Registers (Address Order) (11/16)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 B127h	ELC	Port Buffer Register 1	PDBF1	8	8	2 or 3 PCLKB
0008 B129h	ELC	Event Link Port Setting Register 0	PEL0	8	8	2 or 3 PCLKB
0008 B12Ah	ELC	Event Link Port Setting Register 1	PEL1	8	8	2 or 3 PCLKB
0008 B12Dh	ELC	Event Link Software Event Generation Register	ELSEGR	8	8	2 or 3 PCLKB
0008 B300h	SCI12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 B304h	SCI12	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 B306h	SCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 B309h	SCI12	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 B30Ah	SCI12	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 B30Bh	SCI12	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 B30Ch	SCI12	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
0008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 B320h	SCI12	Extended Serial Mode Enable Register	ESMER	8	8	2 or 3 PCLKB
0008 B321h	SCI12	Control Register 0	CR0	8	8	2 or 3 PCLKB
0008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB
0008 B323h	SCI12	Control Register 2	CR2	8	8	2 or 3 PCLKB
0008 B324h	SCI12	Control Register 3	CR3	8	8	2 or 3 PCLKB
0008 B325h	SCI12	Port Control Register	PCR	8	8	2 or 3 PCLKB
0008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB
0008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB
0008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB
0008 B329h	SCI12	Control Field 0 Data Register	CF0DR	8	8	2 or 3 PCLKB
0008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CF0CR	8	8	2 or 3 PCLKB
0008 B32Bh	SCI12	Control Field 0 Receive Data Register	CF0RR	8	8	2 or 3 PCLKB
0008 B32Ch	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB
0008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB
0008 B32Eh	SCI12	Control Field 1 Compare Enable Register	CF1CR	8	8	2 or 3 PCLKB
0008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB
0008 B330h	SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 B331h	SCI12	Timer Mode Register	TMR	8	8	2 or 3 PCLKB
0008 B332h	SCI12	Timer Prescaler Register	TPRE	8	8	2 or 3 PCLKB
0008 B333h	SCI12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB
0008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C022h	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB

Table 5.14 DC Characteristics (12)

Conditions: $0 V \le VCC = VCC_USB \le 3.6 V$, VSS = AVSS0 = VSS_USB = 0 V, T_a = -40 to +105°C

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Power-on VCC	At normal startup*1	SrVCC	0.02	_	20	ms/V	
rising gradient	During fast startup time*2		0.02		2		
	Voltage monitoring 1 reset enabled at startup*3, *4		0.02		—		

Note: When powering on AVCC0 and VCC, power them on at the same time or VCC first.

Note 1. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 2. When OFS1.(STUPLVD1REN, FASTSTUP) = 10b.

Note 3. When OFS1.STUPLVD1REN = 0.

Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the register settings set by OFS1 are not read in boot mode.

Table 5.15DC Characteristics (13)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to} +105^{\circ}\text{C}$ The ripple voltage must meet the allowable ripple frequency $f_{r(\text{VCC})}$ within the range between the VCC upper limit (3.6 V) and lower limit (1.8 V).

When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Allowable ripple frequency	f _{r (VCC)}			10	kHz	Figure 5.11 V _{r (VCC)} ≤ VCC × 0.2
				1	MHz	Figure 5.11 V _{r (VCC)} ≤ VCC × 0.08
				10	MHz	Figure 5.11 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising/ falling gradient	dt/dVCC	1.0	_	—	ms/V	When VCC change exceeds VCC ±10%

Figure 5.11 Ripple Waveform

Table 5.16 DC Characteristics (14)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	1.4	4.7	7.0	μF	

Note: • The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Table 5.19Output Voltage (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions		
Low-level	All output ports (except for RIIC, ports P40 to P44, P46, ports PJ6, PJ7) Ports P40 to P44, P46, ports PJ6, PJ7 RIIC pins Standard mode		All output ports		V _{OL}	—	0.6	V	I _{OL} = 3.0 mA
output voltage				—	0.4		I _{OL} = 1.5 mA		
			Ports P40 to P44, P46, ports PJ6, PJ7		—	0.4		I _{OL} = 0.4 mA	
				—	0.4		I _{OL} = 3.0 mA		
		Fast mode		—	0.6		I _{OL} = 6.0 mA		
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)		V _{OH}	VCC - 0.5	_	V	I _{OH} = -2.0 mA		
	Ports P40 to P44, P	46, ports PJ6, PJ7		AVCC0 - 0.5	—		I _{OH} = -0.1 mA		

Table 5.20Output Voltage (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Max.	Unit	Test Conditions
Low-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OL}		0.6	V	I _{OL} = 1.5 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		_	0.4		I _{OL} = 0.4 mA
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OH}	VCC - 0.5	_	V	I _{OH} = -1.0 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 - 0.5	_		I _{OH} = -0.1 mA

5.2.1 Standard I/O Pin Output Characteristics (1)

Figure 5.12 to Figure 5.15 show the characteristics of general ports (except for the RIIC output pin, ports P40 to P44, P46, ports PJ6, PJ7)

Figure 5.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at T_a = 25°C (Reference Data)

Figure 5.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 1.8 V (Reference Data)

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	High-speed mode	Crystal connected to	Main clock oscillator operating* ²	t _{SBYMC}		2	3	ms	Figure 5.34
		main clock oscillator	Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}		2	3	ms	
		External clock input to main	Main clock oscillator operating* ⁴	t _{SBYEX}	_	35	50	μs	
		clock oscillator	Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	-	70	95	μs	
		Sub-clock oscillate	or operating	t _{SBYSC}	-	650	800	μs	
		HOCO clock oscill	ator operating*6	t _{SBYHO}	_	40	55	μs	
		LOCO clock oscill	ator operating	t _{SBYLO}		40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Figure 5.34 Software Standby Mode Cancellation Timing

Figure 5.42 SCK Clock Input Timing

Figure 5.49 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Division Ratio Other Than Divided by 2) and Simple SPI Timing (Master, CKPH = 0)

Figure 5.56 AVCC0 to AVREFH0 Voltage Range

Classification	Channel	Conditions	Remarks
High-precision channel	AN000 to AN004, AN006	AVCC0 = 1.8 to 3.6 V	Pins AN000 to AN004 and AN006 cannot be used as digital outputs when the A/D converter is in use.
Normal-precision channel	AN008 to AN015		
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 3.6 V	
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 3.6 V	

Table 5.41 A/D Converter Channel Classification

Table 5.42 A/D Internal Reference Voltage Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$, $2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}^{*1}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Internal reference voltage input channel* ²	1.36	1.43	1.50	V	

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.

Figure 5.57 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Figure D 48-Pin LFQFP (PLQP0048KB-A)

