

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                              |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | RX                                                                               |
| Core Size                  | 32-Bit Single-Core                                                               |
| Speed                      | 32MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, SCI, SPI, USB                                                  |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                          |
| Number of I/O              | 30                                                                               |
| Program Memory Size        | 16KB (16K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | 8K x 8                                                                           |
| RAM Size                   | 8K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                      |
| Data Converters            | A/D 10x12b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 48-WFQFN Exposed Pad                                                             |
| Supplier Device Package    | 48-HWQFN (7x7)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f5111jadne-ua |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.4 Pin Functions

 Table 1.4 lists the pin functions.

# Table 1.4Pin Functions (1/3)

| Classifications                   | Pin Name                             | I/O                 | Description                                                                                                                                                |
|-----------------------------------|--------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power supply                      | VCC                                  | Input               | Power supply pin. Connect it to the system power supply.                                                                                                   |
|                                   | VCL                                  | _                   | Connect this pin to the VSS pin via the 4.7 $\mu$ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. |
|                                   | VSS                                  | Input               | Ground pin. Connect it to the system power supply (0 V).                                                                                                   |
|                                   | VCC_USB                              | Input               | Power supply pin for USB. Connect this pin to VCC.                                                                                                         |
|                                   | VSS_USB                              | Input               | Ground pin for USB. Connect this pin to VSS.                                                                                                               |
| Analog power supply               | AVCC0                                | Input               | Analog voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.                                   |
|                                   | AVSS0                                | Input               | Analog ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.                                           |
|                                   | VREFH0                               | Input               | Analog reference voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.                         |
|                                   | VREFL0                               | Input               | Analog reference ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.                                 |
| Clock                             | XTAL                                 | Output/<br>Input *1 | Pins for connecting a crystal. An external clock can be input through the XTAL pin.                                                                        |
|                                   | EXTAL                                | Input               |                                                                                                                                                            |
|                                   | XCIN                                 | Input               | Input/output pins for the sub-clock oscillator. Connect a crystal between                                                                                  |
|                                   | XCOUT                                | Output              | XCIN and XCOUT.                                                                                                                                            |
|                                   | CLKOUT                               | Output              | Clock output pin.                                                                                                                                          |
| Operating mode<br>control         | MD                                   | Input               | Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.                                                    |
|                                   | UB#                                  | Input               | Pin used for boot mode (USB interface).                                                                                                                    |
|                                   | UPSEL                                | Input               | Pin used for boot mode (USB interface).                                                                                                                    |
| System control                    | RES#                                 | Input               | Reset pin. This MCU enters the reset state when this signal goes low.                                                                                      |
| CAC                               | CACREF                               | Input               | Input pin for the clock frequency accuracy measurement circuit.                                                                                            |
| On-chip<br>emulator               | FINED                                | I/O                 | FINE interface pin.                                                                                                                                        |
| LVD                               | CMPA2                                | Input               | Detection target voltage pin for voltage detection 2                                                                                                       |
| Interrupts                        | NMI                                  | Input               | Non-maskable interrupt request pin.                                                                                                                        |
|                                   | IRQ0 to IRQ7                         | Input               | Interrupt request pins.                                                                                                                                    |
| Multi-function timer pulse unit 2 | MTIOC0A, MTIOC0B<br>MTIOC0C, MTIOC0D | I/O                 | The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.                                                                              |
|                                   | MTIOC1A, MTIOC1B                     | I/O                 | The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.                                                                             |
|                                   | MTIOC2A, MTIOC2B                     | I/O                 | The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.                                                                             |
|                                   | MTIOC3A, MTIOC3B<br>MTIOC3C, MTIOC3D | I/O                 | The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.                                                                              |
|                                   | MTIOC4A, MTIOC4B<br>MTIOC4C, MTIOC4D | I/O                 | The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.                                                                              |
|                                   | MTIC5U, MTIC5V, MTIC5W               | Input               | The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.                                                                                 |
|                                   | MTCLKA, MTCLKB,<br>MTCLKC, MTCLKD    | Input               | Input pins for the external clock.                                                                                                                         |
| Port output<br>enable 2           | POE0# to POE3#, POE8#                | Input               | Input pins for request signals to place the MTU pins in the high impedance state.                                                                          |



# 1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.



Figure 1.3 Pin Assignments of the 64-Pin LFQFP/LQFP



Table 1.8List of Pins and Pin Functions (40-Pin HWQFN) (2/2)

| Pin<br>No. | Power Supply,<br>Clock, System<br>Control | I/O Port | Timers<br>(MTU, POE, RTC) | Communication<br>(SCIe, SCIf, RSPI, RIIC, USB) | Others |  |
|------------|-------------------------------------------|----------|---------------------------|------------------------------------------------|--------|--|
| 40         | AVCC0                                     |          |                           |                                                |        |  |

Note 1. Not 5 V tolerant.

Note 2. The power source of the I/O buffer for these pins is AVCCO.



# 2.1 General-Purpose Registers (R0 to R15)

This CPU has 16 general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

# 2.2 Control Registers

# (1) Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).

Set the ISP or USP to a multiple of 4, as this reduces the numbers of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

# (2) Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

## (3) Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

## (4) Processor Status Word (PSW)

The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.

## (5) Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.

## (6) Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.

After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

## (7) Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a branch destination address when a fast interrupt has been generated.

# 2.3 Register Associated with DSP Instructions

## (1) Accumulator (ACC)

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and multiply-and-accumulate instructions; EMUL, EMULU, MUL, and RMPA, in which case the prior value in the accumulator is modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively. Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.



| Address    | Module<br>Symbol | Register Name                                | Register<br>Symbol | Number of<br>Bits | Access<br>Size | Number of Access<br>States |
|------------|------------------|----------------------------------------------|--------------------|-------------------|----------------|----------------------------|
| 0008 7343h | ICU              | Interrupt Source Priority Register 067       | IPR067             | 8                 | 8              | 2 ICLK                     |
| 0008 7344h | ICU              | Interrupt Source Priority Register 068       | IPR068             | 8                 | 8              | 2 ICLK                     |
| 0008 7345h | ICU              | Interrupt Source Priority Register 069       | IPR069             | 8                 | 8              | 2 ICLK                     |
| 0008 7346h | ICU              | Interrupt Source Priority Register 070       | IPR070             | 8                 | 8              | 2 ICLK                     |
| 0008 7347h | ICU              | Interrupt Source Priority Register 071       | IPR071             | 8                 | 8              | 2 ICLK                     |
| 0008 7358h | ICU              | Interrupt Source Priority Register 088       | IPR088             | 8                 | 8              | 2 ICLK                     |
| 0008 7359h | ICU              | Interrupt Source Priority Register 089       | IPR089             | 8                 | 8              | 2 ICLK                     |
| 0008 735Ah | ICU              | Interrupt Source Priority Register 090       | IPR090             | 8                 | 8              | 2 ICLK                     |
| 0008 735Ch | ICU              | Interrupt Source Priority Register 092       | IPR092             | 8                 | 8              | 2 ICLK                     |
| 0008 735Dh | ICU              | Interrupt Source Priority Register 093       | IPR093             | 8                 | 8              | 2 ICLK                     |
| 0008 7366h | ICU              | Interrupt Source Priority Register 102       | IPR102             | 8                 | 8              | 2 ICLK                     |
| 0008 7367h | ICU              | Interrupt Source Priority Register 103       | IPR103             | 8                 | 8              | 2 ICLK                     |
| 0008 736Ah | ICU              | Interrupt Source Priority Register 106       | IPR106             | 8                 | 8              | 2 ICLK                     |
| 0008 7372h | ICU              | Interrupt Source Priority Register 114       | IPR114             | 8                 | 8              | 2 ICLK                     |
| 0008 7376h | ICU              | Interrupt Source Priority Register 118       | IPR118             | 8                 | 8              | 2 ICLK                     |
| 0008 7379h | ICU              | Interrupt Source Priority Register 121       | IPR121             | 8                 | 8              | 2 ICLK                     |
| 0008 737Bh | ICU              | Interrupt Source Priority Register 123       | IPR123             | 8                 | 8              | 2 ICLK                     |
| 0008 737Dh | ICU              | Interrupt Source Priority Register 125       | IPR125             | 8                 | 8              | 2 ICLK                     |
| 0008 737Fh | ICU              | Interrupt Source Priority Register 127       | IPR127             | 8                 | 8              | 2 ICLK                     |
| 0008 7381h | ICU              | Interrupt Source Priority Register 129       | IPR129             | 8                 | 8              | 2 ICLK                     |
| 0008 7385h | ICU              | Interrupt Source Priority Register 133       | IPR133             | 8                 | 8              | 2 ICLK                     |
| 0008 7386h | ICU              | Interrupt Source Priority Register 134       | IPR134             | 8                 | 8              | 2 ICLK                     |
| 0008 738Ah | ICU              | Interrupt Source Priority Register 138       | IPR138             | 8                 | 8              | 2 ICLK                     |
| 0008 738Bh | ICU              | Interrupt Source Priority Register 139       | IPR139             | 8                 | 8              | 2 ICLK                     |
| 0008 73AAh | ICU              | Interrupt Source Priority Register 170       | IPR170             | 8                 | 8              | 2 ICLK                     |
| 0008 73ABh | ICU              | Interrupt Source Priority Register 171       | IPR171             | 8                 | 8              | 2 ICLK                     |
| 0008 73DAh | ICU              | Interrupt Source Priority Register 218       | IPR218             | 8                 | 8              | 2 ICLK                     |
| 0008 73DEh | ICU              | Interrupt Source Priority Register 222       | IPR222             | 8                 | 8              | 2 ICLK                     |
| 0008 73EEh | ICU              | Interrupt Source Priority Register 238       | IPR238             | 8                 | 8              | 2 ICLK                     |
| 0008 73F2h | ICU              | Interrupt Source Priority Register 242       | IPR242             | 8                 | 8              | 2 ICLK                     |
| 0008 73F3h | ICU              | Interrupt Source Priority Register 243       | IPR243             | 8                 | 8              | 2 ICLK                     |
| 0008 73F4h | ICU              | Interrupt Source Priority Register 244       | IPR244             | 8                 | 8              | 2 ICLK                     |
| 0008 73F5h | ICU              | Interrupt Source Priority Register 245       | IPR245             | 8                 | 8              | 2 ICLK                     |
| 0008 73F6h | ICU              | Interrupt Source Priority Register 246       | IPR246             | 8                 | 8              | 2 ICLK                     |
| 0008 73F7h | ICU              | Interrupt Source Priority Register 247       | IPR247             | 8                 | 8              | 2 ICLK                     |
| 0008 73F8h | ICU              | Interrupt Source Priority Register 248       | IPR248             | 8                 | 8              | 2 ICLK                     |
| 0008 73F9h | ICU              | Interrupt Source Priority Register 249       | IPR249             | 8                 | 8              | 2 ICLK                     |
| 0008 7500h | ICU              | IRQ Control Register 0                       | IRQCR0             | 8                 | 8              | 2 ICLK                     |
| 0008 7501h | ICU              | IRQ Control Register 1                       | IRQCR1             | 8                 | 8              | 2 ICLK                     |
| 0008 7502h | ICU              | IRQ Control Register 2                       | IRQCR2             | 8                 | 8              | 2 ICLK                     |
| 0008 7503h | ICU              | IRQ Control Register 3                       | IRQCR3             | 8                 | 8              | 2 ICLK                     |
| 0008 7504h | ICU              | IRQ Control Register 4                       | IRQCR4             | 8                 | 8              | 2 ICLK                     |
| 0008 7505h | ICU              | IRQ Control Register 5                       | IRQCR5             | 8                 | 8              | 2 ICLK                     |
| 0008 7506h | ICU              | IRQ Control Register 6                       | IRQCR6             | 8                 | 8              | 2 ICLK                     |
| 0008 7507h | ICU              | IRQ Control Register 7                       | IRQCR7             | 8                 | 8              | 2 ICLK                     |
| 0008 7510h | ICU              | IRQ Pin Digital Filter Enable Register 0     | IRQFLTE0           | 8                 | 8              | 2 ICLK                     |
| 0008 7514h | ICU              | IRQ Pin Digital Filter Setting Register 0    | IRQFLTC0           | 16                | 16             | 2 ICLK                     |
| 0008 7580h | ICU              | Non-Maskable Interrupt Status Register       | NMISR              | 8                 | 8              | 2 ICLK                     |
| 0008 7581h | ICU              | Non-Maskable Interrupt Enable Register       | NMIER              | 8                 | 8              | 2 ICLK                     |
| 0008 7582h | ICU              | Non-Maskable Interrupt Status Clear Register | NMICLR             | 8                 | 8              | 2 ICLK                     |
| 0008 7583h | ICU              | NMI Pin Interrupt Control Register           | NMICR              | 8                 | 8              | 2 ICLK                     |
| 0008 7590h | ICU              | NMI Pin Digital Filter Enable Register       | NMIFLTE            | 8                 | 8              | 2 ICLK                     |

## Table 4.1 List of I/O Registers (Address Order) (5/16)



| Table 4.1 | List of I/O Registers (Address Order) (11/16) |
|-----------|-----------------------------------------------|
|-----------|-----------------------------------------------|

| Address    | Module<br>Symbol | Register Name                                 | Register<br>Symbol | Number of<br>Bits | Access<br>Size | Number of Access<br>States |
|------------|------------------|-----------------------------------------------|--------------------|-------------------|----------------|----------------------------|
| 0008 B127h | ELC              | Port Buffer Register 1                        | PDBF1              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B129h | ELC              | Event Link Port Setting Register 0            | PEL0               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B12Ah | ELC              | Event Link Port Setting Register 1            | PEL1               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B12Dh | ELC              | Event Link Software Event Generation Register | ELSEGR             | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B300h | SCI12            | Serial Mode Register                          | SMR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B301h | SCI12            | Bit Rate Register                             | BRR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B302h | SCI12            | Serial Control Register                       | SCR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B303h | SCI12            | Transmit Data Register                        | TDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B304h | SCI12            | Serial Status Register                        | SSR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B305h | SCI12            | Receive Data Register                         | RDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B306h | SCI12            | Smart Card Mode Register                      | SCMR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B307h | SCI12            | Serial Extended Mode Register                 | SEMR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B308h | SCI12            | Noise Filter Setting Register                 | SNFR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B309h | SCI12            | I <sup>2</sup> C Mode Register 1              | SIMR1              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B30Ah | SCI12            | I <sup>2</sup> C Mode Register 2              | SIMR2              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B30Bh | SCI12            | I <sup>2</sup> C Mode Register 3              | SIMR3              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B30Ch | SCI12            | I <sup>2</sup> C Status Register              | SISR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B30Dh | SCI12            | SPI Mode Register                             | SPMR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B320h | SCI12            | Extended Serial Mode Enable Register          | ESMER              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B321h | SCI12            | Control Register 0                            | CR0                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B322h | SCI12            | Control Register 1                            | CR1                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B323h | SCI12            | Control Register 2                            | CR2                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B324h | SCI12            | Control Register 3                            | CR3                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B325h | SCI12            | Port Control Register                         | PCR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B326h | SCI12            | Interrupt Control Register                    | ICR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B327h | SCI12            | Status Register                               | STR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B328h | SCI12            | Status Clear Register                         | STCR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B329h | SCI12            | Control Field 0 Data Register                 | CF0DR              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Ah | SCI12            | Control Field 0 Compare Enable Register       | CF0CR              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Bh | SCI12            | Control Field 0 Receive Data Register         | CF0RR              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Ch | SCI12            | Primary Control Field 1 Data Register         | PCF1DR             | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Dh | SCI12            | Secondary Control Field 1 Data Register       | SCF1DR             | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Eh | SCI12            | Control Field 1 Compare Enable Register       | CF1CR              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B32Fh | SCI12            | Control Field 1 Receive Data Register         | CF1RR              | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B330h | SCI12            | Timer Control Register                        | TCR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B331h | SCI12            | Timer Mode Register                           | TMR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B332h | SCI12            | Timer Prescaler Register                      | TPRE               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 B333h | SCI12            | Timer Count Register                          | TCNT               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C000h | PORT0            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C001h | PORT1            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C002h | PORT2            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C003h | PORT3            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C004h | PORT4            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C005h | PORT5            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C00Ah | PORTA            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C00Bh | PORTB            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C00Ch | PORTC            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C00Eh | PORTE            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C012h | PORTJ            | Port Direction Register                       | PDR                | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C020h | PORT0            | Port Output Data Register                     | PODR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C021h | PORT1            | Port Output Data Register                     | PODR               | 8                 | 8              | 2 or 3 PCLKB               |
| 0008 C022h | PORT2            | Port Output Data Register                     | PODR               | 8                 | 8              | 2 or 3 PCLKB               |



# 5.2.1 Standard I/O Pin Output Characteristics (1)

Figure 5.12 to Figure 5.15 show the characteristics of general ports (except for the RIIC output pin, ports P40 to P44, P46, ports PJ6, PJ7)



Figure 5.12  $V_{OH}/V_{OL}$  and  $I_{OH}/I_{OL}$  Voltage Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at T<sub>a</sub> = 25°C (Reference Data)



Figure 5.13 V<sub>OH</sub>/V<sub>OL</sub> and I<sub>OH</sub>/I<sub>OL</sub> Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 1.8 V (Reference Data)



Figure 5.14 V<sub>OH</sub>/V<sub>OL</sub> and I<sub>OH</sub>/I<sub>OL</sub> Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 2.7 V (Reference Data)



Figure 5.15 V<sub>OH</sub>/V<sub>OL</sub> and I<sub>OH</sub>/I<sub>OL</sub> Temperature Characteristics of General Ports (Except for the RIIC Output Pin, Ports P40 to P44, P46, Ports PJ6, PJ7) at VCC = 3.3 V (Reference Data)

RENESAS

### Table 5.24 Clock Timing

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                                                 |                 | Symbol               | Min.  | Тур.   | Max.  | Unit | Test Conditions   |
|------------------------------------------------------|-----------------|----------------------|-------|--------|-------|------|-------------------|
| XTAL external clock input cycle time                 |                 |                      | 50    | _      | _     | ns   | Figure 5.23       |
| XTAL external clock input high pulse width           |                 | t <sub>XH</sub>      | 20    | —      |       | ns   |                   |
| XTAL external clock input low pulse width            |                 | t <sub>XL</sub>      | 20    | —      |       | ns   |                   |
| XTAL external clock rising time                      |                 | t <sub>Xr</sub>      |       | —      | 5     | ns   |                   |
| XTAL external clock falling time                     |                 | t <sub>Xf</sub>      | —     | —      | 5     | ns   |                   |
| XTAL external clock input wait time*1                |                 | t <sub>EXWT</sub>    | 0.5   | _      | _     | μs   |                   |
| Main clock oscillator oscillation frequency          | 2.4 ≤ VCC ≤ 3.6 | f <sub>MAIN</sub>    | 1     | —      | 20    | MHz  |                   |
|                                                      | 1.8 ≤ VCC < 2.4 |                      | 1     | —      | 8     |      |                   |
| Main clock oscillation stabilization time (crystal)* | 2               | t <sub>MAINOSC</sub> | _     | 3      | -     | ms   | Figure 5.25       |
| Main clock oscillation stabilization time (ceramic   | resonator)*2    | t <sub>MAINOSC</sub> | _     | 50     |       | μs   |                   |
| LOCO clock oscillation frequency                     |                 | f <sub>LOCO</sub>    | 3.44  | 4.0    | 4.56  | MHz  |                   |
| LOCO clock oscillation stabilization time            |                 | t <sub>LOCO</sub>    |       | —      | 0.5   | μs   | Figure 5.26       |
| IWDT-dedicated clock oscillation frequency           |                 | f <sub>ILOCO</sub>   | 12.75 | 15     | 17.25 | kHz  |                   |
| IWDT-dedicated clock oscillation stabilization tin   | ne              | t <sub>ILOCO</sub>   | —     | —      | 50    | μs   | Figure 5.24       |
| HOCO clock oscillation frequency                     |                 | f <sub>HOCO</sub>    | 31.52 | 32     | 32.48 | MHz  | Ta = -40 to 85°C  |
|                                                      |                 |                      | 31.68 | 32     | 32.32 |      | Ta = -20 to 85°C  |
|                                                      |                 |                      | 31.36 | 32     | 32.64 |      | Ta = -40 to 105°C |
| HOCO clock oscillation stabilization time            |                 | t <sub>HOCO2</sub>   | _     | —      | 56    | μs   | Figure 5.28       |
| PLL input frequency*3                                |                 | f <sub>PLLIN</sub>   | 4     | —      | 8     | MHz  |                   |
| PLL circuit oscillation frequency*3                  |                 | f <sub>PLL</sub>     | 32    | —      | 48    | MHz  |                   |
| PLL clock oscillation stabilization time             |                 | t <sub>PLL</sub>     | —     | —      | 50    | μs   | Figure 5.29       |
| PLL free-running oscillation frequency               |                 |                      |       | 8      | _     | MHz  |                   |
| Sub-clock oscillator oscillation frequency*5         |                 | f <sub>SUB</sub>     | —     | 32.768 | —     | kHz  |                   |
| Sub-clock oscillation stabilization time*4           |                 | t <sub>SUBOSC</sub>  | —     | 0.5    | —     | s    | Figure 5.30       |

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.

Note 2. Reference values when an 8-MHz oscillator is used. When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the oscillator-manufacturer-recommended value. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.

Note 3. The VCC range that the PLL can be used is 2.4 to 3.6 V.

Note 4. After changing the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturer-recommended value has elapsed. Reference value when a 32.768-kHz resonator is used.

Note 5. Only 32.768 kHz can be used.



# 5.3.2 Reset Timing

### Table 5.25 Reset Timing

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                                                            |                            |                    | Min. | Тур. | Max.                   | Unit        | Test<br>Conditions |
|-----------------------------------------------------------------|----------------------------|--------------------|------|------|------------------------|-------------|--------------------|
| RES# pulse width                                                | At power-on                | t <sub>RESWP</sub> | 3    | _    | —                      | ms          | Figure 5.31        |
|                                                                 | Other than above           | t <sub>RESW</sub>  | 30   | —    | —                      | μs          | Figure 5.32        |
| Wait time after RES#                                            | At normal startup*1        | t <sub>RESWT</sub> | —    | 8.5  | —                      | ms          | Figure 5.31        |
| cancellation<br>(at power-on)                                   | During fast startup time*2 | t <sub>RESWT</sub> | —    | 560  | —                      | μs          |                    |
| Wait time after RES# cand<br>(during powered-on state)          | t <sub>RESWT</sub>         | —                  | 114  | —    | μs                     | Figure 5.32 |                    |
| Independent watchdog tin                                        | t <sub>RESWIW</sub>        | —                  | 1    | —    | IWDT<br>clock<br>cycle | Figure 5.33 |                    |
| Software reset period                                           | t <sub>RESWSW</sub>        | —                  | 1    | —    | ICLK<br>cycle          |             |                    |
| Wait time after independent watchdog timer reset cancellation*3 |                            |                    | _    | 300  | _                      | μs          | ]                  |
| Wait time after software re                                     | eset cancellation          | t <sub>RESW2</sub> | _    | 168  | _                      | μs          |                    |

Note 1. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b. Note 2. When OFS1.(STUPLVD1REN, FASTSTUP)  $\neq$  11b.

Note 3. When IWDTCR.CKS[3:0] = 0000b.







Figure 5.32 Reset Input Timing (1)



# 5.3.3 Timing of Recovery from Low Power Consumption Modes

## Table 5.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$ ,  $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$ ,  $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$ ,  $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                           |                              |                              |                                                               |                    | Min. | Тур. | Max. | Unit | Test<br>Conditions |
|--------------------------------|------------------------------|------------------------------|---------------------------------------------------------------|--------------------|------|------|------|------|--------------------|
| Recovery time<br>from software | High-speed<br>mode           | Crystal connected to         | Main clock oscillator<br>operating* <sup>2</sup>              | t <sub>SBYMC</sub> |      | 2    | 3    | ms   | Figure 5.34        |
| standby mode*1                 |                              | main clock<br>oscillator     | Main clock oscillator and PLL circuit operating* <sup>3</sup> | t <sub>SBYPC</sub> |      | 2    | 3    | ms   |                    |
|                                | External clo<br>input to mai | External clock input to main | Main clock oscillator<br>operating* <sup>4</sup>              | t <sub>SBYEX</sub> | _    | 35   | 50   | μs   |                    |
|                                |                              | clock oscillator             | Main clock oscillator and PLL circuit operating* <sup>5</sup> | t <sub>SBYPE</sub> | -    | 70   | 95   | μs   |                    |
|                                |                              | Sub-clock oscillate          | or operating                                                  | t <sub>SBYSC</sub> | -    | 650  | 800  | μs   |                    |
|                                |                              | HOCO clock oscill            | ator operating*6                                              | t <sub>SBYHO</sub> | _    | 40   | 55   | μs   |                    |
|                                |                              | LOCO clock oscill            | ator operating                                                | t <sub>SBYLO</sub> |      | 40   | 55   | μs   |                    |

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 6. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.



#### **Control Signal Timing** 5.3.4

#### Table 5.31 **Control Signal Timing**

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item            | Symbol            | Min.                                   | Тур. | Max. | Unit | Test Conditions             |                                 |  |
|-----------------|-------------------|----------------------------------------|------|------|------|-----------------------------|---------------------------------|--|
| NMI pulse width | t <sub>NMIW</sub> | 200                                    | —    | —    | ns   | NMI digital filter disabled | t <sub>Pcyc</sub> × 2 ≤ 200 ns  |  |
|                 |                   | t <sub>Pcyc</sub> × 2*1                | —    | —    |      | (NMIFLTE.NFLTEN = 0)        | t <sub>Pcyc</sub> × 2 > 200 ns  |  |
|                 |                   | 200                                    | —    | —    |      | NMI digital filter enabled  | t <sub>NMICK</sub> × 3 ≤ 200 ns |  |
|                 |                   | t <sub>NMICK</sub> × 3.5* <sup>2</sup> | _    | —    |      | (NMIFLTE.NFLTEN = 1)        | t <sub>NMICK</sub> × 3 > 200 ns |  |
| IRQ pulse width | t <sub>IRQW</sub> | 200                                    | _    | —    | ns   | IRQ digital filter disabled | t <sub>Pcyc</sub> × 2 ≤ 200 ns  |  |
|                 |                   | t <sub>Pcyc</sub> × 2*1                | _    | —    |      | (IRQFLTE0.FLTENi = 0)       | t <sub>Pcyc</sub> × 2 > 200 ns  |  |
|                 |                   | 200                                    | _    | —    |      | IRQ digital filter enabled  | t <sub>IRQCK</sub> × 3 ≤ 200 ns |  |
|                 |                   | t <sub>IRQCK</sub> × 3.5* <sup>3</sup> | _    | _    |      | (IRQFLTE0.FLTENi = 1)       | t <sub>IRQCK</sub> × 3 > 200 ns |  |

Note: • 200 ns minimum in software standby mode. Note 1.  $t_{Pcyc}$  indicates the cycle of PCLKB.

Note 2.  $t_{\text{NMICK}}$  indicates the cycle of the NMI digital filter sampling clock. Note 3.  $t_{\text{IRQCK}}$  indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).



#### Figure 5.36 **NMI Interrupt Input Timing**



#### Figure 5.37 **IRQ Interrupt Input Timing**



## Table 5.34 Timing of On-Chip Peripheral Modules (3)

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$ ,  $1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}$ ,  $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$ ,  $T_a = -40 \text{ to } +105^{\circ}\text{C}$ , C = 30 pF

|        | Item                            |                | Symbol                                  | Min. | Max.  | Unit*1             | Test Conditions |
|--------|---------------------------------|----------------|-----------------------------------------|------|-------|--------------------|-----------------|
| Simple | SCK clock cycle output (master) |                | t <sub>SPcyc</sub>                      | 4    | 65536 | t <sub>Pcyc</sub>  | Figure 5.46     |
| SPI    | SCK clock cycle input (slave)   |                |                                         | 6    | 65536 |                    |                 |
|        | SCK clock high pulse width      |                | t <sub>SPCKWH</sub>                     | 0.4  | 0.6   | t <sub>SPcyc</sub> |                 |
|        | SCK clock low pulse width       |                | t <sub>SPCKWL</sub>                     | 0.4  | 0.6   | t <sub>SPcyc</sub> |                 |
|        | SCK clock rise/fall time        |                | t <sub>SPCKr</sub> , t <sub>SPCKf</sub> | _    | 20    | ns                 |                 |
|        | Data input setup time (master)  | 2.7 V or above | t <sub>SU</sub>                         | 65   | —     | ns                 | Figure 5.47,    |
|        |                                 | 1.8 V or above |                                         | 95   | —     |                    | Figure 5.49     |
|        | Data input setup time (slave)   | ·              |                                         | 40   | _     |                    |                 |
|        | Data input hold time            |                | t <sub>H</sub>                          | 40   | —     | ns                 |                 |
|        | SS input setup time             |                | t <sub>LEAD</sub>                       | 3    | _     | t <sub>Pcyc</sub>  |                 |
|        | SS input hold time              |                | t <sub>LAG</sub>                        | 3    | _     | t <sub>Pcyc</sub>  |                 |
|        | Data output delay time (master) |                | t <sub>OD</sub>                         | —    | 40    | ns                 |                 |
|        | Data output delay time (slave)  | 2.7 V or above |                                         | —    | 65    |                    |                 |
|        |                                 | 1.8 V or above |                                         | —    | 85    |                    |                 |
|        | Data output hold time (master)  | 2.7 V or above | t <sub>ОН</sub>                         | -10  | _     | ns                 |                 |
|        |                                 | 1.8 V or above |                                         | -20  | —     |                    |                 |
|        | Data output hold time (slave)   |                |                                         | -10  | —     |                    |                 |
|        | Data rise/fall time             |                | t <sub>Dr,</sub> t <sub>Df</sub>        |      | 20    | ns                 |                 |
|        | SS input rise/fall time         |                | t <sub>SSLr,</sub> t <sub>SSLf</sub>    |      | 20    | ns                 |                 |
|        | Slave access time               |                | t <sub>SA</sub>                         | _    | 6     | t <sub>Pcyc</sub>  | Figure 5.51,    |
|        | Slave output release time       |                | t <sub>REL</sub>                        |      | 6     | t <sub>Pcyc</sub>  | Figure 5.52     |

Note 1.  $t_{Pcyc}$ : PCLK cycle











Figure 5.42 SCK Clock Input Timing









| Classification                              | Channel                    | Conditions           | Remarks                                                             |
|---------------------------------------------|----------------------------|----------------------|---------------------------------------------------------------------|
| High-precision channel                      | AN000 to AN004, AN006      | AVCC0 = 1.8 to 3.6 V | Pins AN000 to AN004 and AN006                                       |
| Normal-precision channel                    | AN008 to AN015             |                      | cannot be used as digital outputs when the A/D converter is in use. |
| Internal reference voltage input<br>channel | Internal reference voltage | AVCC0 = 2.0 to 3.6 V |                                                                     |
| Temperature sensor input<br>channel         | Temperature sensor output  | AVCC0 = 2.0 to 3.6 V |                                                                     |

### Table 5.41 A/D Converter Channel Classification

### Table 5.42 A/D Internal Reference Voltage Characteristics

Conditions:  $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$ ,  $2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}^{*1}$ ,  $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{USB} = 0 \text{ V}$ ,  $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                                                      | Min. | Тур. | Max. | Unit | Test Conditions |
|-----------------------------------------------------------|------|------|------|------|-----------------|
| Internal reference voltage input<br>channel* <sup>2</sup> | 1.36 | 1.43 | 1.50 | V    |                 |

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.



# 5.6 D/A Conversion Characteristics

## Table 5.43 D/A Conversion Characteristics

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}$ ,  $1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}$ ,  $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$ , fPCLKB  $\le 32 \text{ MHz}$ ,  $T_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                 |                    | Min. | Тур. | Max. | Unit | Test Conditions                            |  |
|----------------------|--------------------|------|------|------|------|--------------------------------------------|--|
| Resolution           |                    | _    | —    | 8    | Bit  |                                            |  |
| Conversion time      | VCC = 2.7 to 3.6 V | _    | —    | 3.0  | μs   | 35-pF capacitive load                      |  |
|                      | VCC = 1.6 to 2.7 V | _    | —    | 6.0  |      |                                            |  |
| Absolute accuracy    | VCC = 2.4 to 3.6 V | _    | —    | ±3.0 | LSB  | 2-MΩ resistive load<br>4-MΩ resistive load |  |
|                      | VCC = 1.8 to 2.4 V | _    | —    | ±3.5 |      |                                            |  |
|                      | VCC = 2.4 to 3.6 V | _    | —    | ±2.0 | LSB  |                                            |  |
|                      | VCC = 1.8 to 2.4 V | _    | —    | ±2.5 |      |                                            |  |
| RO output resistance |                    | —    | 6.4  | —    | kΩ   |                                            |  |

# 5.7 Temperature Sensor Characteristics

### Table 5.44 Temperature Sensor Characteristics

Conditions:  $2.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                          | Symbol             | Min. | Тур.  | Max. | Unit  | Test Conditions |
|-------------------------------|--------------------|------|-------|------|-------|-----------------|
| Relative accuracy             | —                  | _    | ±1.5  | —    | °C    | 2.4 V or above  |
|                               |                    | —    | ±2.0  | —    |       | Below 2.4 V     |
| Temperature slope             | —                  | —    | -3.65 | —    | mV/°C |                 |
| Output voltage (at 25°C)      | —                  | —    | 1.05  | —    | V     | VCC = 3.3 V     |
| Temperature sensor start time | t <sub>START</sub> | —    | —     | 5    | μs    |                 |
| Sampling time                 | _                  | 5    | _     | _    | μs    |                 |



# 5.8 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

|                         |                      |                     |      |      |      | -    | · u                         |
|-------------------------|----------------------|---------------------|------|------|------|------|-----------------------------|
| Item                    |                      | Symbol              | Min. | Тур. | Max. | Unit | Test Conditions             |
| Voltage detection level | Power-on reset (POR) | V <sub>POR</sub>    | 1.35 | 1.50 | 1.65 | V    | Figure 5.58,<br>Figure 5.59 |
|                         | Voltage detection    | V <sub>det1_4</sub> | 3.00 | 3.10 | 3.20 | V    | Figure 5.60                 |
|                         | circuit (LVD1)*1     | V <sub>det1_5</sub> | 2.91 | 3.00 | 3.09 |      | At falling edge VCC         |
|                         |                      | V <sub>det1_6</sub> | 2.81 | 2.90 | 2.99 |      |                             |
|                         |                      | V <sub>det1_7</sub> | 2.70 | 2.79 | 2.88 |      |                             |
|                         |                      | V <sub>det1_8</sub> | 2.60 | 2.68 | 2.76 |      |                             |
|                         |                      | V <sub>det1_9</sub> | 2.50 | 2.58 | 2.66 |      |                             |
|                         |                      | V <sub>det1_A</sub> | 2.40 | 2.48 | 2.56 |      |                             |
|                         |                      | V <sub>det1_B</sub> | 1.99 | 2.06 | 2.13 |      |                             |
|                         |                      | V <sub>det1_C</sub> | 1.90 | 1.96 | 2.02 |      |                             |
|                         |                      | V <sub>det1_D</sub> | 1.80 | 1.86 | 1.92 |      |                             |

#### Table 5.45 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet1\_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

#### Table 5.46 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item                                          |                                                               | Symbol                 | Min. | Тур. | Max. | Unit | Test Conditions                               |  |
|-----------------------------------------------|---------------------------------------------------------------|------------------------|------|------|------|------|-----------------------------------------------|--|
| Voltage detection level                       | Voltage detection circuit                                     | V <sub>det2_0</sub>    | 2.71 | 2.90 | 3.09 | V    | Figure 5.61                                   |  |
|                                               | (LVD2)*1                                                      | V <sub>det2_1</sub>    | 2.43 | 2.60 | 2.77 |      | At falling edge VCC                           |  |
|                                               |                                                               | V <sub>det2_2</sub>    | 1.87 | 2.00 | 2.13 |      |                                               |  |
|                                               |                                                               | V <sub>det2_3</sub> *2 | 1.69 | 1.80 | 1.91 |      |                                               |  |
| Wait time after power-on                      | At normal startup*3                                           | t <sub>POR</sub>       |      | 9.1  | —    | ms   | Figure 5.59                                   |  |
| reset cancellation                            | During fast startup time*4                                    | t <sub>POR</sub>       |      | 1.6  | —    |      |                                               |  |
| Wait time after voltage<br>monitoring 1 reset | Power-on voltage monitoring<br>1 reset disabled* <sup>3</sup> | t <sub>LVD1</sub>      | —    | 568  | —    | μs   | Figure 5.60                                   |  |
| cancellation                                  | Power-on voltage monitoring<br>1 reset enabled* <sup>4</sup>  |                        | —    | 100  | —    |      |                                               |  |
| Wait time after voltage mo                    | nitoring 2 reset cancellation                                 | t <sub>LVD2</sub>      |      | 100  | —    | μs   | Figure 5.61                                   |  |
| Response delay time                           |                                                               | t <sub>det</sub>       |      | _    | 350  | μs   | Figure 5.58                                   |  |
| Minimum VCC down time*                        | 5                                                             | t <sub>VOFF</sub>      | 350  | —    | —    | μs   | Figure 5.58,<br>VCC = 1.0 V or above          |  |
| Power-on reset enable tim                     | e                                                             | t <sub>W(POR)</sub>    | 1    | —    | —    | ms   | Figure 5.59,<br>VCC = below 1.0 V             |  |
| LVD operation stabilization                   | time (after LVD is enabled)                                   | Td <sub>(E-A)</sub>    |      | _    | 300  | μs   | Figure 5.60, Figure 5.61                      |  |
| Hysteresis width (LVD1 and LVD2)              |                                                               | V <sub>LVH</sub>       |      | 70   | —    | mV   | Vdet1_4 selected                              |  |
|                                               |                                                               |                        | _    | 60   | —    |      | Vdet1_5 to 9, LVD2 selected                   |  |
|                                               |                                                               |                        | _    | 50   | —    |      | When selection is from<br>among Vdet1_A to B. |  |
|                                               |                                                               |                        | —    | 40   | —    |      | When selection is from among Vdet1_C to D.    |  |

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet2\_n denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.

Note 2. Vdet2\_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.

Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 4. When OFS1.(STUPLVD1REN, FASTSTUP) ≠ 11b.

Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels  $V_{POR}$ ,  $V_{det0}$ ,  $V_{det1}$ , and  $V_{det2}$  for the POR/LVD.

# 5.9 Oscillation Stop Detection Timing

## Table 5.47 Oscillation Stop Detection Circuit Characteristics

Conditions:  $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVSS0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$ 

| Item           | Symbol          | Min. | Тур. | Max. | Unit | Test<br>Conditions |
|----------------|-----------------|------|------|------|------|--------------------|
| Detection time | t <sub>dr</sub> | —    | —    | 1    | ms   | Figure 5.62        |



Figure 5.62 Oscillation Stop Detection Timing



#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.