E·XFL Renesas Electronics America Inc - <u>R5S72661P144FP#VZ Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, SCI, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5M x 8
Voltage - Supply (Vcc/Vdd)	1.15V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72661p144fp-vz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Sp	pecification
Power-down modes	•	Four power-down modes provided to reduce the power consumption in this LSI
		— Sleep mode
		— Software standby mode
		— Deep standby mode
		— Module standby mode
Multi-function timer pulse unit 2	•	Maximum 16 lines of pulse inputs/outputs based on fix channels of 16- bit timers
	•	18 output compare and input capture registers
	•	Input capture function
	•	Pulse output modes
		Toggle, PWM, complementary PWM, and reset-synchronized PWM modes
	•	Synchronization of multiple counters
	•	Complementary PWM output mode
		 — Non-overlapping waveforms output for 3-phase inverter control
		 Automatic dead time setting
		 — 0% to 100% PWM duty value specifiable
		 A/D converter start request delaying function
		 Interrupt skipping at crest or trough
	•	Reset-synchronized PWM mode
		Three-phase PWM waveforms in positive and negative phases can be output with a required duty value
	•	Phase counting mode
		Two-phase encoder pulse counting available
Compare match timer	•	Two-channel 16-bit counters
	•	Four types of clock can be selected (P ϕ /8, P ϕ /32, P ϕ /128, and P ϕ /512)
	•	DMA transfer request or interrupt request can be issued when a
		compare match occurs
Realtime clock	•	Internal clock, calendar function, alarm function
	•	Interrupts can be generated at intervals of 1/64 s by the 32.768-kHz on-chip crystal oscillator

Instruction Formats	Source Operand	Destination Operand	Example		
nd4 format 150 xxxx xxxx nnnn dddd	R0 (Register direct)	nnnndddd: Register indirect with displacement	MOV.B R0,@(disp,Rn)		
nmd format 15 0 xxxx nnnn mmmm dddd	mmmm: Register direct	nnnndddd: Register indirect with displacement	MOV.L Rm,@(disp,Rn)		
	mmmmdddd: Register indirect with displacement	nnnn: Register direct	MOV.L @(disp,Rm),Rn		
nmd12 format 32 16 xxxx nnnn mmmm xxxx	mmmm: Register direct	nnnndddd: Register indirect with displacement	MOV.L Rm,@(disp12,Rn)		
15 0 xxxx dddd dddd dddd	mmmmdddd: Register indirect with displacement	nnnn: Register direct	MOV.L @(disp12,Rm),Rn		
d format 150 xxxx xxxx dddd dddd	ddddddd: GBR indirect with displacement	R0 (Register direct)	MOV.L @(disp,GBR),R0		
	R0 (Register direct)	ddddddd: GBR indirect with displacement	MOV.L R0,@(disp,GBR)		
	ddddddd: PC relative with displacement	R0 (Register direct)	MOVA @(disp,PC),R0		
	ddddddd: TBR duplicate indirect with displacement		JSR/N @@(disp8,TBR)		
	ddddddd: PC relative	_	BF label		
d12 format	dddddddddd: PC		BRA label		
15 0 xxxx dddd dddd dddd	relative		(label = disp + PC)		
nd8 format 150 xxxx nnnn dddd dddd	ddddddd: PC relative with displacement	nnnn: Register direct	MOV.L @(disp,PC),Rn		

2.4 Instruction Set

2.4.1 Instruction Set by Classification

Table 2.10 lists the instructions according to their classification.

Table 2.10 Classification of Instructions

Classification	Types	Operation Code	Function	No. of Instructions
Data transfer	13	MOV	Data transfer	62
			Immediate data transfer	
			Peripheral module data transfer	
			Structure data transfer	
			Reverse stack transfer	
		MOVA	Effective address transfer	_
		MOVI20	20-bit immediate data transfer	-
		MOVI20S	20-bit immediate data transfer	_
			8-bit left-shit	
		MOVML	R0-Rn register save/restore	_
		MOVMU	Rn-R14 and PR register save/restore	_
		MOVRT	T bit inversion and transfer to Rn	-
		MOVT	T bit transfer	_
		MOVU	Unsigned data transfer	_
		NOTT	T bit inversion	-
		PREF	Prefetch to operand cache	_
		SWAP	Swap of upper and lower bytes	-
		XTRCT	Extraction of the middle of registers connected	

2.5 Processing States

The CPU has five processing states: reset, exception handling, bus-released, program execution, and power-down. Figure 2.6 shows the transitions between the states.

Figure 2.6 Transitions between Processing States

[Legend]

x: Don't care.

- Note: Cache update cycle: 16-byte read access Write-back cycle in write-back buffer: 16-byte write access
 - * Neither LRU updated. LRU is updated in all other cases.

8.3.6 Coherency of Cache and External Memory or Large-Capacity On-Chip RAM

Use software to ensure coherency between the cache and the external memory or the largecapacity on-chip RAM. When memory shared by this LSI and another device is mapped in the cache-enabled space, operate the memory-mapped cache to invalidate and write back as required. The same operation should be performed for the memory shared by the CPU and the direct memory access controller in this LSI.

		Initial		
Bit	Bit Name	Value	R/W	Description
10 to 7	PCW[3:0]	1010	R/W	Number of Access Wait Cycles
				Specify the number of wait cycles to be inserted.
				0000: 3 cycles
				0001: 6 cycles
				0010: 9 cycles
				0011: 12 cycles
				0100: 15 cycles
				0101: 18 cycles
				0110: 22 cycles
				0111: 26 cycles
				1000: 30 cycles
				1001: 33 cycles
				1010: 36 cycles
				1011: 38 cycles
				1100: 52 cycles
				1101: 60 cycles
				1110: 64 cycles
				1111: 80 cycles
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input is valid. The specification by this bit is valid even when the number of access wait cycles is 0.
				0: External wait input is valid
				1: External wait input is ignored
5, 4	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Figures 9.13 shows an example of the connection of the SDRAM with the LSI.

(2) Address Multiplexing

An address multiplexing is specified so that SDRAM can be connected without external multiplexing circuitry according to the setting of bits BSZ[1:0] in CSnBCR and bits A2ROW[1:0], A2COL[1:0], A3ROW[1:0], and A3COL[1:0] in SDCR. Tables 9.9 to 9.11 show the relationship between the settings of bits BSZ[1:0], A2ROW[1:0], A2COL[1:0], A3ROW[1:0], and A3COL[1:0] and the bits output at the address pins. Do not specify those bits in the manner other than this table, otherwise the operation of this LSI is not guaranteed. A25 to A18 are not multiplexed and the original values of address are always output at these pins.

When the data bus width is 16 bits (BSZ1 and BSZ0 = B'10), A0 of SDRAM specifies a word address. Therefore, connect this A0 pin of SDRAM to the A1 pin of the LSI; the A1 pin of SDRAM to the A2 pin of the LSI, and so on.

16.3.14 Buffer Control Register (SPBFCR)

SPBFCR resets the number of data units in the transmit buffer (SPTX) or receive buffer (SPRX) and sets the number of triggering data units.

Bit:	7	6	5	4	3	2	1	0
	TXRST	RXRST	TXTRG[1:0]		—	RXTRG[2:0]		
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TXRST	0	R/W	Transmit Buffer Data Reset
				Resets the transmit buffer to an empty state. Transmit data in the transmit buffer becomes invalid when this bit is set to 1.
				0: Disables the reset operation*.
				1: Enables the reset operation
				Note: The reset operation is performed after a
				power-on reset.
6	RXRST	0	R/W	Receive Buffer Data Reset
				Resets the receive buffer to an empty state. Receive data in the receive buffer becomes invalid when this bit is set to 1.
				0: Disables the reset operation*.
				1: Enables the reset operation
				Note: The reset operation is performed after a power-on reset.

16.4 Operation

In this section, the serial transfer period means a period from the beginning of driving valid data to the fetching of the final valid data.

16.4.1 Overview of Operations

This module is capable of serial transfers in slave mode and master mode. A particular mode of this module can be selected by using the MSTR bit in the control register (SPCR). Table 16.4 gives the relationship between the modes and SPCR settings, and a description of each mode.

Mode	Slave (SPI Operation)	Master (SPI Operation)
MSTR bit setting	0	1
MODFEN bit setting	0 or 1	0
RSPCK signal	Input	Output
MOSI signal	Input	Output
MISO signal	Output/Hi-Z	Input
SSL signal	Input	Output
SSL polarity modification function	Supported	Supported
Transfer rate	Up to Bφ/8	Up to B _{\$\phi} /2
Clock source	RSPCK input	On-chip baud rate generator
Clock polarity	Two	Two
Clock phase	Two	Two
First transfer bit	MSB/LSB	MSB/LSB
Transfer data length	8 to 32 bits	8 to 32 bits
Burst transfer	Possible (CPHA = 1)	Possible (CPHA = 0,1)
RSPCK delay control	Not supported	Supported
SSL negation delay control	Not supported	Supported
Next-access delay control	Not supported	Supported
Transfer activation method	SSL input active or RSPCK oscillation	Transmit buffer is written when SPE = 1
Sequence control	Not supported	Supported

 Table 16.4
 Relationship between Modes and SPCR and Description of Each Mode

18.6 Bit Synchronous Circuit

In master mode, this module has a possibility that high level period may be short in the two states described below.

- When SCL is driven to low by the slave device
- When the rising speed of SCL is lowered by the load of the SCL line (load capacitance or pullup resistance)

Therefore, it monitors SCL and communicates by bit with synchronization.

Figure 18.22 shows the timing of the bit synchronous circuit and table 18.5 shows the time when the SCL output changes from low to Hi-Z then SCL is monitored.

20.3.4 Receive Data Register (SIRDR)

SIRDR reads receive data of this module. SIRDR stores data in the receive FIFO.

SIRDR is initialized by a receive reset caused by the RXRST bit in SICTR.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SIRDL[15:0]															
Initial Value:	Undefined U	Indefined	Undefined													
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SIRDR[15:0]															
Initial Value:	Undefined U	Indefined	Undefined													
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
31 to 16	SIRDL	Undefined	R	Left-Channel Receive Data
	[15:0]			Store data received from the SIOFRxD pin as left- channel data. The position of the left-channel data in the receive frame is specified by the RDLA bit in SIRDAR.
				 These bits are valid only when the RDLE bit in SIRDAR is set to 1.
15 to 0	SIRDR	Undefined	R	Right-Channel Receive Data
	[15:0]			Store data received from the SIOFRxD pin as right- channel data. The position of the right-channel data in the receive frame is specified by the RDRA bit in SIRDAR.
				• These bits are valid only when the RDRE bit in SIRDAR is set to 1.

20.4.5 FIFO

(1) Overview

The transmit and receive FIFOs of this module have the following features.

- 16-stage 32-bit FIFOs for transmission and reception
- One FIFO buffer stage is used regardless of the access size. (One-stage 32-bit FIFO access cannot be divided into multiple accesses.)

(2) Transfer Request

The following FIFO transfer requests can be issued to the CPU or direct memory access controller.

- Transmit request: TDREQ (transmit FIFO transfer request)
- Receive request: RDREQ (receive FIFO transfer request)

The conditions to issue the transmit/receive FIFO transfer requests can be specified individually. The transmit request condition is specified with the TFWM2 to TFWM0 bits in SIFCTR, and the receive FIFO transfer request is specified with the RFWM2 to RFWM0 bits in SIFCTR. Tables 20.8 and 20.9 summarize the conditions specified by SIFCTR.

TFWM2 to TFWM0	Number of Requested Stages	Transmit Request Issued	Used Areas
000	1	There are sixteen stages of empty area.	Smallest
100	4	There are twelve or more stages of empty area.	↑
101	8	There are eight or more stages of empty area.	—
110	12	There are four or more stages of empty area.	_ ↓
111	16	There is one or more stage of empty area.	Largest

Table 20.8 Conditions to Issue Transmit Request

				Address			
	Control0	LAFM	Data	Control1	Time Stamp	Trigger Time	TT control
Mailbox	4 bytes	4 bytes	8 bytes	2 bytes	2 bytes	2 bytes	2 bytes
19	360 - 363	364 - 367	368 – 36F	370 – 371	No	No	No
20	380 - 383	384 - 387	388 – 38F	390 – 391	No	No	No
21	3A0 - 3A3	3A4 – 3A7	3A8 – 3AF	3B0 – 3B1	No	No	No
22	3C0 - 3C3	3C4 – 3C7	3C8 – 3CF	3D0 – 3D1	No	No	No
23	3E0 – 3E3	3E4 – 3E7	3E8 – 3EF	3F0 – 3F1	No	No	No
24	400 - 403	404 - 407	408 – 40F	410 – 411	No	414 – 415	416 – 417
25	420 - 423	424 – 427	428 – 42F	430 – 431	No	434 – 435	436 – 437
26	440 - 443	444 – 447	448 – 44F	450 – 451	No	454 – 455	456 – 457
27	460 - 463	464 - 467	468 – 46F	470 – 471	No	474 – 475	476 – 477
28	480 - 483	484 - 487	488 – 48F	490 – 491	No	494 – 495	496 – 497
29	4A0 – 4A3	4A4 – 4A7	4A8 – 4AF	4B0 – 4B1	No	4B4 – 4B5	4B6 – 4B7
30	4C0 - 4C3	4C4 – 4C7	4C8 – 4CF	4D0 – 4D1	4D2 – 4D3	4D4 – 4D5	No
					(Local Time)		
31	4E0 – 4E3	4E4 – 4E7	4E8 – 4EF	4F0 – 4F1	4F2 – 4F3	No	No
					(Local Time)		

Mailbox-0 is a receive-only box, and all the other Mailboxes can operate as both receive and transmit boxes, dependant upon the MBC (Mailbox Configuration) bits in the Message Control. The following diagram shows the structure of a Mailbox in detail.

22.3.14 IEBus Lock Address Register 2 (IELA2)

IELA2 specifies the upper four bits of a locked address when a unit is locked.

Bit:	7	6	5	4	3	2	1	0	
	-	-	-	-		ILA	U4]
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R	R	R	

Di4	Dit Nama	Initial Volue		Description
DIL	Bit Maine	value	R/ W	Description
7 to 4		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
3 to 0	ILAU4	0000	R	Upper Four Bits of IEBus Locked Address
				Stores the upper four bits of the master unit address when a unit is locked. These bits are valid only when the LCK bit in IEFLG is set

Dit	Dit Name	Initial	D 44/	Description
Bit	Bit Name	Value	R/W	Description
6	BITEND	0	R/W	Specifies treatment of the bit order of the input data from the serial sound interface.
				When this bit is set to 1, the bits within each byte are rearranged to place them in reverse order, bit $0 \rightarrow bit 7$ to bit $7 \rightarrow bit 0$.
5, 4	BUFEND0 [1:0]	01	R/W	These bits select whether to change the order of 16-bit units of data transferred from the serial sound interface or suppress the stream data. In the serial sound interface, either "padding mode" or "non-padding mode" is selectable. In non-padding mode, each 32 bits of data transferred from the serial sound interface are CD-ROM data. Since the CD-ROM decoder has two 16-bit input data registers, the order of the 16-bit data can be swapped within the 32 bits. On the other hand, in padding mode each 32 bits of data transferred from the serial sound interface includes padding. Since the padding is without meaning, it should be kept out of the input stream to the decoder. This suppression can be specified by the setting of this register.
				bit data, and this register controls which 16-bit portion of each 32 bits of data transferred from the serial sound interface should be input first.
				00: The 16 bits of stream data that would otherwise be processed first is discarded.
				01: The higher-order 16 bits of each 32 bits of data received from the serial sound interface are placed first in the stream to the decoder.
				10: The lower-order 16 bits of each 32 bits of data received from the serial sound interface are placed first in the stream to the decoder.
				11: Setting prohibited

- 3. Wait until the corresponding CSSTS bit is cleared to 0 (only when the host controller function has been selected).
- 4. Wait until the corresponding PBUSY bit is cleared to 0.
- Note: The PBUSY bit may remain set to 1 if the device is detached while USB transaction processing is in progress.
- 5. Modify the bits in the pipe control register.

The following bits in the pipe control registers can be modified only when the pertinent information has not been set by the CURPIPE bits in CFIFOSEL, D0FIFOSEL and D1FIFOSEL.

Registers that Should Not be Set When CURPIPE in FIFO-PORT is set.

- Bits in DCPCFG and DCPMAXP
- Bits in PIPECFG, PIPEBUF, PIPEMAXP and PIPEPERI
- ACLRM bit in PIPEnCTR

In order to modify pipe information, the CURPIPE bits should be set to the pipes other than the pipe to be modified. For the DCP, the buffer should be cleared using BCLR after the pipe information is modified.

(2) Transfer Types

The TYPE bit in PIPEPCFG is used to specify the transfer type for each pipe. The transfer types that can be set for the pipes are as follows.

- 1. DCP: No setting is necessary (fixed at control transfer).
- 2. PIPE1 and PIPE2: These should be set to bulk transfer or isochronous transfer.
- 3. PIPE3 to PIPE5: These should be set to bulk transfer.
- 4. PIPE6 to PIPE9: These should be set to interrupt transfer.

(3) Endpoint Number

The EPNUM bit in PIPEPCFG is used to set the endpoint number for each pipe. The DCP is fixed at endpoint 0. The other pipes can be set from endpoint 1 to endpoint 15.

- 1. DCP: No setting is necessary (fixed at end point 0).
- 2. PIPE1 to PIPE9: The endpoint numbers from 1 to 15 should be selected and set.

These should be set so that the combination of the DIR bit and EPNUM bit is unique.

28.7.6	Horizontal Valid	Video Start	Position 1	Register	(VIDEO_	_HSTART)	
--------	------------------	-------------	------------	----------	---------	----------	--

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-				VIDEO	_HSTAR	T[8:0]			
Initial value:	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0
R/W:	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
31 to 9		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
8 to 0	VIDEO_ HSTART[8:0]	H'114	R/W	These bits specify in number of DV_CLK cycles the horizontal start position of the valid video in the field.

Note: Capture does not occur when the right edge of video has been cut.

28.7.7 Timing Control Register 1 for Vertical Sync Signal for Video (VIDEO_VSYNC_TIM1)

0 R/W
0
0

Bit	Bit Name	Initial Value	R/W	Description
31 to 26	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
25 to 16	VIDEO_VSYNC _START1_ TOP [9:0]	H'000	R/W	These bits specify the reference Vsync position in the TOP field in number of lines.
15 to 10		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
9 to 0	VIDEO_VSYNC _START1_ BTM[9:0]	H'000	R/W	These bits specify the reference Vsync position in the BOTTOM field in number of lines.

(2) Canceling Software Standby Mode

Software standby mode is canceled by interrupts (NMI or IRQ) or a reset (power-on reset). Clock signal starts to be output from the CKIO pin.

• Canceling by an interrupt

When the falling edge or rising edge of the NMI pin (selected by the NMI edge select bit (NMIE) in interrupt control register 0 (ICR0) of the interrupt controller) or the falling edge or rising edge of an IRQ pin (IRQ7 to IRQ0) (selected by the IRQn sense select bits (IRQn1S and IRQn0S) in interrupt control register 1 (ICR1) of the interrupt controller) is detected, clock oscillation is started. This clock pulse is supplied only to the oscillation settling counter (watchdog timer) used to count the oscillation settling time.

After the elapse of the time set in the clock select bits (CKS[2:0]) in the watchdog timer control/status register (WTCSR) of the watchdog timer before the transition to software standby mode, the watchdog timer overflow occurs. Since this overflow indicates that the clock has been stabilized, the clock pulse will be supplied to the entire chip after this overflow. Software standby mode is thus cleared and NMI interrupt exception handling (IRQ interrupt exception handling in case of IRQ) is started. If the priority level of the generated interrupt is equal to or lower than the interrupt mask level specified in the status register (SR) of the CPU, the interrupt request is not accepted and software standby mode is not canceled.

When canceling software standby mode by the NMI interrupt or IRQ interrupt, set the CKS[2:0] bits so that the watchdog timer overflow period will be equal to or longer than the oscillation settling time.

The clock output phase of the CKIO pin may be unstable immediately after detecting an interrupt and until software standby mode is canceled.

• Canceling by a reset

When the $\overline{\text{RES}}$ pin is driven low, software standby mode is canceled and the LSI enters the power-on reset state. After that, if the $\overline{\text{RES}}$ pin is driven high, the power-on reset exception handling is started.

Keep the $\overline{\text{RES}}$ pin low until the clock oscillation settles. The internal clock will continue to be output to the CKIO pin.