E. Renesas Electronics America Inc - <u>R5S72661W144FP#V0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, SCI, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5M x 8
Voltage - Supply (Vcc/Vdd)	1.15V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72661w144fp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(3) Power-On Reset Initiated by Watchdog Timer

When a setting is made for a power-on reset to be generated in watchdog timer mode of the watchdog timer, and WTCNT of the watchdog timer overflows, this LSI enters the power-on reset state.

In this case, WRCSR of the watchdog timer and FRQCR of the clock pulse generator are not initialized by the reset signal generated by the watchdog timer.

If a reset caused by the $\overline{\text{RES}}$ pin or the user debugging interface reset assert command occurs simultaneously with a reset caused by watchdog timer overflow, the reset caused by the $\overline{\text{RES}}$ pin or the user debugging interface reset assert command has priority, and the WOVF bit in WRCSR is cleared to 0. When power-on reset exception processing is started by the watchdog timer, the CPU operates in the same way as when a power-on reset was caused by the $\overline{\text{RES}}$ pin.

6.2.4 Manual Reset

(1) Manual Reset Initiated by Watchdog Timer

When a setting is made for a manual reset to be generated in watchdog timer mode of the watchdog timer, and WTCNT of the watchdog timer overflows, this LSI enters the manual reset state.

When manual reset exception processing is started by the watchdog timer, the CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from the exception handling vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vector table.
- 3. The vector base register (VBR) is cleared to H'00000000, the interrupt mask level bits (I3 to I0) of the status register (SR) are initialized to H'F (B'1111), and the BO and CS bits are initialized to 0. The BN bit in IBNR of interrupt controller is also initialized to 0.
- 4. The values fetched from the exception handling vector table are set in the PC and SP, and the program begins executing.

7.8 Register Banks

This LSI has fifteen register banks used to perform register saving and restoration required in the interrupt processing at high speed. Figure 7.10 shows the register bank configuration.

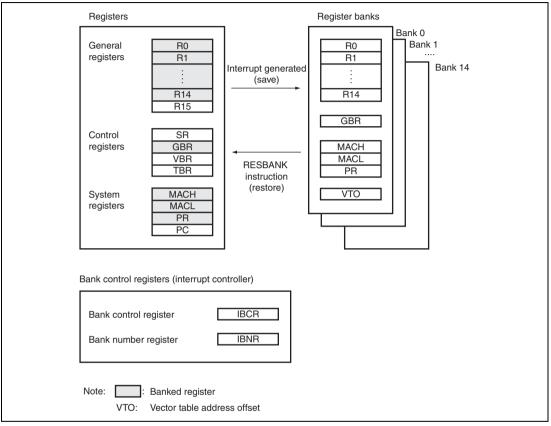


Figure 7.10 Overview of Register Bank Configuration

Figure 9.1 shows a block diagram of this module.

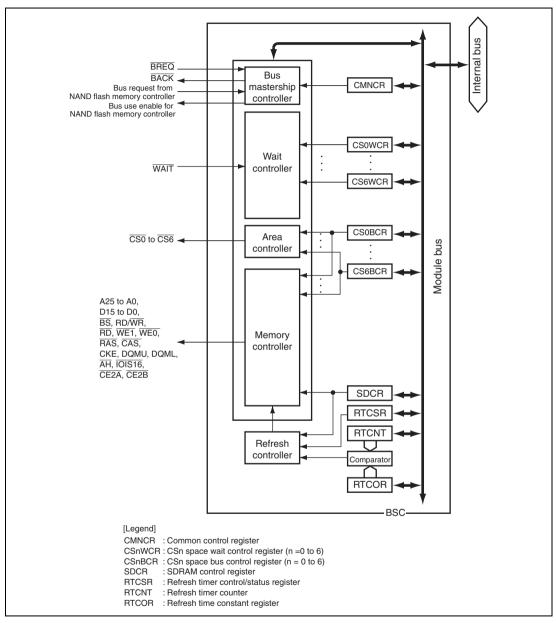


Figure 9.1 Block Diagram of Bus State Controller

(a) Auto-refreshing

Refreshing is performed at intervals determined by the input clock selected by bits CKS2 to CKS0 in RTCSR, and the value set by in RTCOR. The value of bits CKS2 to CKS0 in RTCOR should be set so as to satisfy the refresh interval stipulation for the SDRAM used. First make the settings for RTCOR, RTCNT, and the RMODE and RFSH bits in SDCR, and then make the CKS2 to CKS0 and RRC2 to RRC0 settings. When the clock is selected by bits CKS2 to CKS0, RTCNT starts counting up from the value at that time. The RTCNT value is constantly compared with the RTCOR value, and if the two values are the same, a refresh request is generated and an auto-refresh is performed for the number of times specified by the RRC2 to RRC0. At the same time, RTCNT is cleared to zero and the count-up is restarted.

Figure 9.25 shows the auto-refresh cycle timing. After starting the auto refreshing, PALL command is issued in the Tp cycle to make all the banks to pre-charged state from active state when some bank is being pre-charged. Then REF command is issued in the Trr cycle after inserting idle cycles of which number is specified by the WTRP1 and WTRP0 bits in CS3WCR. A new command is not issued for the duration of the number of cycles specified by the WTRC1 and WTRC0 bits in CS3WCR after the Trr cycle. The WTRC1 and WTRC0 bits must be set so as to satisfy the SDRAM refreshing cycle time stipulation (tRC). An idle cycle is inserted between the Tp cycle and Trr cycle when the setting value of the WTRP1 and WTRP0 bits in CS3WCR is longer than or equal to 1 cycle.

(12) Low-Power SDRAM

The low-power SDRAM can be accessed using the same protocol as the normal SDRAM.

The differences between the low-power SDRAM and normal SDRAM are that partial refresh takes place that puts only a part of the SDRAM in the self-refresh state during the self-refresh function, and that power consumption is low during refresh under user conditions such as the operating temperature. The partial refresh is effective in systems in which the data in a work area other than the specific area can be lost without severe repercussions. For details, please refer to the Data Sheet for the low-power SDRAM to be used.

The low-power SDRAM supports the extension mode register in addition to the mode registers as the normal SDRAM. This LSI supports issuing of the extension mode register write command (EMRS).

The EMRS command is issued according to the conditions specified in table below. For example, if data H'0YYYYYY is written to address H'FFFC5XX0 in longword, the commands are issued to the CS3 space in the following sequence: PALL -> REF \times 8 -> MRS -> EMRS. In this case, the MRS and EMRS issue addresses are H'0000XX0 and H'YYYYYY, respectively. If data H'1YYYYYYY is written to address H'FFFC5XX0 in longword, the commands are issued to the CS3 space in the following sequence: PALL -> MRS -> EMRS.

Command to be Issued	Access Address	Access Data	Write Access Size	MRS Command Issue Address	EMRS Command Issue Address
CS2 MRS	H'FFFC4XX0	H'*****	16 bits	H'0000XX0	_
CS3 MRS	H'FFFC5XX0	H'*****	16 bits	H'0000XX0	_
CS2 MRS + EMRS (with refresh)	H'FFFC4XX0	H'0YYYYYYY	32 bits	H'0000XX0	ΗΎΥΥΥΥΥ
CS3 MRS + EMRS (with refresh)	H'FFFC5XX0	H'0YYYYYYY	32 bits	H'0000XX0	ΗΎΥΥΥΥΥ
CS2 MRS + EMRS (without refresh)	H'FFFC4XX0	Η'1ΥΥΥΥΥΥΥ	32 bits	H'0000XX0	ΗΎΥΥΥΥΥΥ
CS3 MRS + EMRS (without refresh)	H'FFFC5XX0	Η'1ΥΥΥΥΥΥΥ	32 bits	H'0000XX0	ΗΎΥΥΥΥΥ

Table 9.14 Output Addresses when EMRS Command Is Issued

(b) Phase counting mode 2

Figure 11.31 shows an example of phase counting mode 2 operation, and table 11.47 summarizes the TCNT up/down-count conditions.

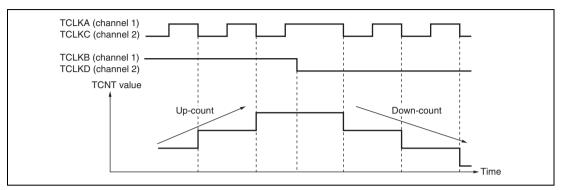


Figure 11.31 Example of Phase Counting Mode 2 Operation

Table 11.47	Up/Down-Count Conditions in Phase Counting Mode 2
-------------	---

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	_F	Don't care
Low level	T_	Don't care
_ 「	Low level	Don't care
₹	High level	Up-count
High level	T_	Don't care
Low level		Don't care
_ _	High level	Don't care
T	Low level	Down-count

[Legend]

F: Rising edge

L: Falling edge

15.3.10 FIFO Data Count Set Register (SCFDR)

SCFDR is a 16-bit register which indicates the quantity of data stored in the transmit FIFO data register (SCFTDR) and the receive FIFO data register (SCFRDR).

It indicates the quantity of transmit data in SCFTDR with the upper 8 bits, and the quantity of receive data in SCFRDR with the lower 8 bits. SCFDR can always be read by the CPU.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-			T[4:0]			-	-	-			R[4:0]		
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
12 to 8	T[4:0]	00000	R	T4 to T0 bits indicate the quantity of non-transmitted data stored in SCFTDR. H'00 means no transmit data, and H'10 means that SCFTDR is full of transmit data.
7 to 5		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
4 to 0	R[4:0]	00000	R	R4 to R0 bits indicate the quantity of receive data stored in SCFRDR. H'00 means no receive data, and H'10 means that SCFRDR full of receive data.

Bit	Bit Name	Initial Value	R/W	Description
5	MST	0	R/W	Master/Slave Select
4	TRS	0	R/W	Transmit/Receive Select
				In master mode with the I ² C bus format, when arbitration is lost, MST and TRS are both reset by hardware, causing a transition to slave receive mode. Modification of the TRS bit should be made between transfer frames.
				When seven bits after the start condition is issued in slave receive mode match the slave address set to SAR and the 8th bit is set to 1, TRS is automatically set to 1. If an overrun error occurs in master receive mode with the clocked synchronous serial format, MST is cleared and the mode changes to slave receive mode.
				Operating modes are described below according to MST and TRS combination. When clocked synchronous serial format is selected and MST = 1, clock is output.
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
3 to 0	CKS[3:0]	0000	R/W	Transfer Clock Select
				These bits should be set according to the necessary transfer rate (table 18.3) in master mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
23 to 20	CHNO[3:0]	All 0	W	Channel Number
				0000: Don't care
				0001: A (left channel)
				0010: B (right channel)
				0011: C
19 to 16	SRCNO[3:0]	All 0	W	Source Number
				0000: Don't care
				0001: 1
				0010: 2
				0011:3
15 to 8	CATCD[7:0]	All 0	W	Category Code (Example)
				00000000: 2-channel general format
				00000001: 2-channel compact disc (IEC 908)
				00000010: 2-channel PCM encoder/decoder
				00000011: 2-channel digital audio tape recorder
7, 6	_	All 0	W	Reserved
				The write value should always be 0.
5 to 1	CTL[4:0]	All 0	W	Control
				The control bits are copied from the source (see IEC60958 standard).
0	_	0	W	Reserved
				The write value should always be 0.

24.3 Register Descriptions

This module has the following registers.

Table 24.1 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address	Access Size
Enable control register	CROMEN	R/W	H'00	H'FFFF9000	8
Sync code-based synchronization control register	CROMSY0	R/W	H'89	H'FFFF9001	8
Decoding mode control register	CROMCTL0	R/W	H'82	H'FFFF9002	8
EDC/ECC check control register	CROMCTL1	R/W	H'D1	H'FFFF9003	8
Automatic decoding stop control register	CROMCTL3	R/W	H'00	H'FFFF9005	8
Decoding option setting control register	CROMCTL4	R/W	H'00	H'FFFF9006	8
HEAD20 to HEAD22 representation control register	CROMCTL5	R/W	H'00	H'FFFF9007	8
Sync code status register	CROMST0	R	H'00	H'FFFF9008	8
Post-ECC header error status register	CROMST1	R	H'00	H'FFFF9009	8
Post-ECC subheader error status register	CROMST3	R	H'00	H'FFFF900B	8
Header/subheader validity check status register	CROMST4	R	H'00	H'FFFF900C	8
Mode determination and link sector detection status register	CROMST5	R	H'00	H'FFFF900D	8
ECC/EDC error status register	CROMST6	R	H'00	H'FFFF900E	8
Buffer status register	CBUFST0	R	H'00	H'FFFF9014	8
Decoding stoppage source status register	CBUFST1	R	H'00	H'FFFF9015	8
Buffer overflow status register	CBUFST2	R	H'00	H'FFFF9016	8
Pre-ECC correction header: minutes data register	HEAD00	R	H'00	H'FFFF9018	8
Pre-ECC correction header: seconds data register	HEAD01	R	H'00	H'FFFF9019	8
Pre-ECC correction header: frames (1/75 second) data register	HEAD02	R	H'00	H'FFFF901A	8
Pre-ECC correction header: mode data register	HEAD03	R	H'00	H'FFFF901B	8

26.3.5 Address Register 2 (FLADR2)

FLADR2 is a 32-bit readable/writable register, and is valid when the ADRCNT2 bit in FLCMDCR is set to 1. FLADR2 specifies an address to be output in command access mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-				ADR	5[7:0]			
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 8	_	All 0	R	Reserved
_				These bits are always read as 0. The write value should always be 0.
7 to 0	ADR5[7:0]	H'00	R/W	Fifth Address Data
				Specify 5th data to be output to flash memory as an address when ADRMD = 1.

Bit	Bit Name	Initial Value	R/W	Description
9	PIPE9NRDY	0	R/W*	NRDY Interrupt Status for PIPE9
				0: Interrupts not generated
				1: Interrupts generated
8	PIPE8NRDY	0	R/W*	NRDY Interrupt Status for PIPE8
				0: Interrupts not generated
				1: Interrupts generated
7	PIPE7NRDY	0	R/W*	NRDY Interrupt Status for PIPE7
				0: Interrupts not generated
				1: Interrupts generated
6	PIPE6NRDY	0	R/W*	NRDY Interrupt Status for PIPE6
				0: Interrupts not generated
				1: Interrupts generated
5	PIPE5NRDY	0	R/W*	NRDY Interrupt Status for PIPE5
				0: Interrupts not generated
				1: Interrupts generated
4	PIPE4NRDY	0	R/W*	NRDY Interrupt Status for PIPE4
				0: Interrupts not generated
				1: Interrupts generated
3	PIPE3NRDY	0	R/W*	NRDY Interrupt Status for PIPE3
				0: Interrupts not generated
				1: Interrupts generated
2	PIPE2NRDY	0	R/W*	NRDY Interrupt Status for PIPE2
				0: Interrupts not generated
				1: Interrupts generated
1	PIPE1NRDY	0	R/W*	NRDY Interrupt Status for PIPE1
				0: Interrupts not generated
				1: Interrupts generated
0	PIPE0NRDY	0	R/W*	NRDY Interrupt Status for PIPE0
				0: Interrupts not generated
				1: Interrupts generated
Nata	* Only Coop h			1: Interrupts generated

Note: * Only 0 can be written.

Bit	Bit Name	Initial Value	R/W	Description
11 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
2 to 0	IITV[2:0]	000	R/W	Interval Error Detection Interval
				Specifies the interval error detection timing for the selected pipe in terms of frames, which is expressed as n-th power of 2 (n is the value to be set).
				As described later, the detailed functions are different in host controller mode and in function controller mode.
				Modify these bits when the value of CSSTS is 0, the PID bits are set to NAK, and no pipe is specified by the CURPIPE bits.
				Before modifying these bits after modifying the PID bits for the selected pipe from BUF to NAK, check that CSSTS and PBUSY are 0. However, if the PID bits have been modified to NAK by this module, checking PBUSY is not necessary.
				Before modifying these bits after USB communication has been completed with these bits set to a certain value, set PID to NAK and then set ACLRM to 1 to initialize the interval timer.
				The IITV bits are invalid for PIPE3 to PIPE5; set these bits to 000 for these pipes.

(5) Register Access Wait Control

There is a restriction on the cycle time for accessing the registers of this module except for SYSSTS as given below.

Wait-related restriction: The cycle time for successive accesses to the USB 2.0 host/function module must be a duration of at least four USB clock (48 MHz) cycles (83.33 ns). To fulfill the above restriction, a register access wait control is necessary using the BWAIT[3:0] bits in BUSWAIT. The initial value is the maximum value (access cycles = 17 clock cycles). The optimum value should be found and set.

Setting example 1: When successively accessing the registers of this module

Bus clock frequency: 72 MHz

Calculation: (2 cycles (access cycles for the registers of this module) + 1 cycle (interval between successive accesses) + BWAIT) \times 1/72 MHz \geq 83.33 ns

BWAIT = 3

Setting example 2: When sending data from the on-chip high-speed RAM to the FIFO port register through DMA transfer

Bus clock frequency: 72 MHz

Calculation: (2 cycles (access cycles for the registers of this module) + 2 cycles (access cycles for the on-chip high-speed RAM) + BWAIT) \times 1/72 MHz \geq 83.33 ns

BWAIT = 2

(6) Input Clock Selection

The UCKSEL bit in SYSCFG can be used to select the input clock signal from USB_X1 or EXTAL for this module. Stop supply of the clock signal to the USB module (SCKE = 0) when the UCKSEL bit is to be modified.

(2) Port J Control Register 0 (PJCR0)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	PJ2MD[2:0]		-	PJ1MD[2:0]		-	PJ	PJ0MD[2:0]			
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description				
15 to 11	_	All 0	R	Reserved				
				These bits are always read as 0. The write value should always be 0.				
10 to 8	PJ2MD[2:0]	000	R/W	PJ2 Mode				
				Select the function of	the PJ2.			
				000: PJ2	100: SCK0			
				001: CTx1	101: LCD_M_DISP			
				010: JRx0&CRx1	110: Setting prohibited			
				011: CS2	111: Setting prohibited			
7		0	R	Reserved				
				This bit is always read should always be 0.	l as 0. The write value			
6 to 4	PJ1MD[2:0]	000	R/W	PJ1 Mode				
				Select the function of	the PJ1.			
				000: PJ1	100: RxD0			
				001: CRx0	101: Setting prohibited			
				010: IERxD	110: Setting prohibited			
				011: IRQ0	111: Setting prohibited			
3		0	R	Reserved				
				This bit is always read should always be 0.	l as 0. The write value			
2 to 0	PJ0MD[2:0]	000	R/W	PJ0 Mode				
				Select the function of	the PJ0.			
				000: PJ0	100: TxD0			
				001: CTx0	101: A0			
				010: IERxD	110: Setting prohibited			
				011: CS1	111: Setting prohibited			

34.4 Operation

34.4.1 TAP Controller

Figure 34.2 shows the internal states of the TAP controller.

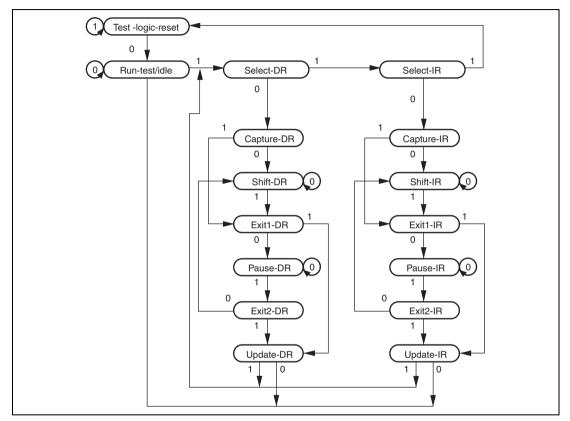
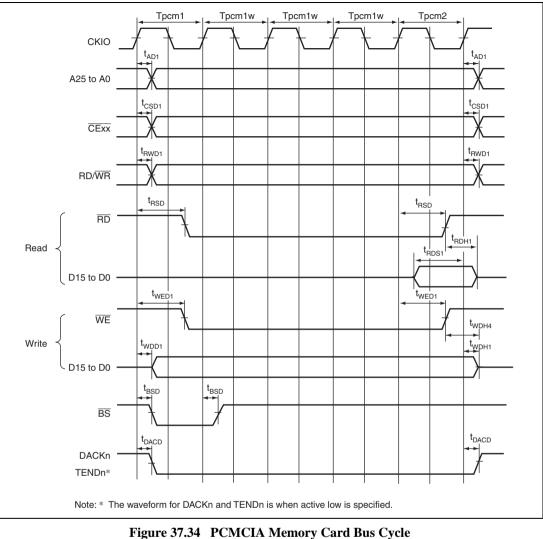



Figure 34.2 TAP Controller State Transitions

Note: The transition condition is the TMS value at the rising edge of TCK. The TDI value is sampled at the rising edge of TCK; shifting occurs at the falling edge of TCK. For details on transition timing of the TDO value, see section 34.4.3, TDO Output Timing. The TDO is at high impedance, except with shift-DR and shift-IR states. During the change to $\overline{\text{TRST}}$ = 0, there is a transition to test-logic-reset asynchronously with TCK.

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Direct memory	RDMATCR_14	_	_	_	_	_	_	_	_
access controller									
	SAR_15								
	DAR_15								
	DMATCR_15	_	_	_	_	_	_	_	
	CHCR_15	тс	_	RLDSAR	RLDDAR	_	DAF	SAF	
		_	_	_	TEMASK	HE	HIE	_	_
		DM[1]	DM[0]	SM[1]	SM[0]	RS[3]	RS[2]	RS[1]	RS[0]
		_	_	ТВ	TS[1]	TS[0]	IE	TE	DE
	RSAR_15								
	RDAR_15								

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Multi-function	TGRA_0								
timer pulse unit 2									
	TGRB_0								
	TGRC_0								
	TGRD_0								
	TGRE_0								
	TGRF_0								
	TIER2_0	TTGE2	—	—	_	_	_	TGIEF	TGIEE
	TSR2_0	_	—	—	_	_	_	TGFF	TGFE
	TBTM_0	_	_	_	_		TTSE	TTSB	TTSA
	TCR_1	_	CCLR[1]	CCLR[0]	CKEG[1]	CKEG[0]	TPSC[2]	TPSC[1]	TPSC[0]
	TMDR_1	_	_	_	_	MD[3]	MD[2]	MD[1]	MD[0]
	TIOR_1	IOB[3]	IOB[2]	IOB[1]	IOB[0]	IOA[3]	IOA[2]	IOA[1]	IOA[0]
	TIER_1	TTGE	_	TCIEU	TCIEV			TGIEB	TGIEA
	TSR_1	TCFD	_	TCFU	TCFV			TGFB	TGFA
	TCNT_1								
	TGRA_1								
	TGRB_1								
	TICCR	_	_	_	_	I2BE	I2AE	I1BE	I1AE
	TCR_2	_	CCLR[1]	CCLR[0]	CKEG[1]	CKEG[0]	TPSC[2]	TPSC[1]	TPSC[0]
	TMDR_2	_	_	_	_	MD[3]	MD[2]	MD[1]	MD[0]
	TIOR_2	IOB[3]	IOB[2]	IOB[1]	IOB[0]	IOA[3]	IOA[2]	IOA[1]	IOA[0]
	TIER_2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA

(TED = 0 Cycle, TEH = 0 Cycle, No Wait)

SSLND
SSLP
STAT 1197
STBCR1 1787
STBCR2 1788
STBCR3 1789
STBCR4 1791
STBCR5 1794
STBCR6 1796
STBCR7 1798
STBCR8
STRMDIN0
STRMDIN2
STRMDOUT01277
SWRSTCR 1801
SYSCFG 1374
SYSCR1
SYSCR2
SYSCR3 1805
SYSCR4 1807
SYSCR5 1808
SYSSTS
TADCOBRA_4
TADCOBRB_4
TADCORA_4
TADCORB 4
457
TBTER
TBTM
TCBR
TCDR
TCMR0 to TCMR2 1085
TCNT
TCNTR
TCNTS
TCR
TDAD
TDDR
TDER
TEC 1060
120

TESTMODE 1387	
TGCR	
TGR 461	
TICCR	
TIER)
TIOR	,
TITCNT	
TITCR	1
TLCA 1201	
TLCS 1205	
TMDR	
TOCR1	,
TOCR2	
TOER	,
TOLBR	
TRCA 1202	,
TRCS 1207	
TRWER	
TSR 449, 1081	
TSTR	
TSYR 463	
TTCR0	
TTTSEL 1087	
TUI 1204	
TWCR	
TXACK01068	
TXACK11067	
TXCR0 1067	
TXCR11066	
TXPR0 1065	
TXPR1 1064	
UFRMNUM1431	
UMSR01074	
UMSR11074	
USBADDR 1432	
USBINDX1435	
USBLENG 1436	
USBREQ1433	
USBVAL 1434	
WRCSR	