E·XFL Renesas Electronics America Inc - <u>R5S72671P144FP#VZ Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, SCI, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	104
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5M x 8
Voltage - Supply (Vcc/Vdd)	1.15V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72671p144fp-vz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Block Diagram

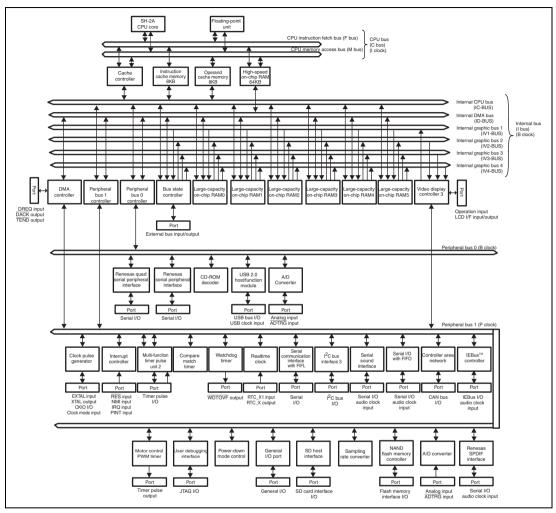
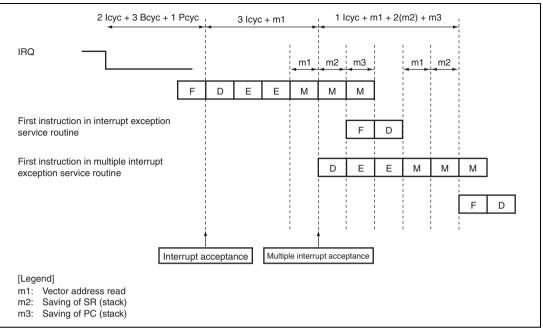
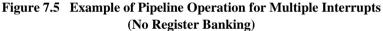




Figure 1.1 Block Diagram

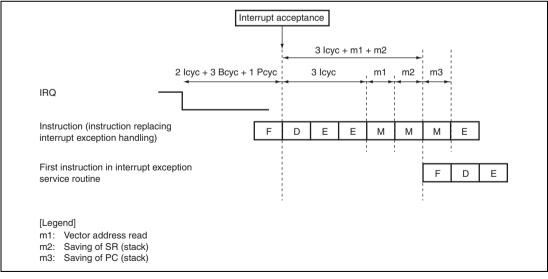


Figure 7.6 Example of Pipeline Operation when IRQ Interrupt is Accepted (Register Banking without Register Bank Overflow)

8.4.3 Usage Examples

(1) Invalidating Specific Entries

Specific cache entries can be invalidated by writing 0 to the entry's V bit in the memory mapping cache access. When the A bit is 1, the tag address specified by the write data is compared to the tag address within the cache selected by the entry address, and data is written to the bits V and U specified by the write data when a match is found. If no match is found, there is no operation. When the V bit of an entry in the address array is set to 0, the entry is written back if the entry's U bit is 1.

An example when a write data is specified in R0 and an address is specified in R1 is shown below.

```
; R0=H'0110 0010; tag address(28-11)=B'0 0001 0001 0000 0000 0, U=0, V=0
; R1=H'F080 0088; operand cache address array access, entry=B'000 1000, A=1
;
MOV.L R0,@R1
```

(2) Reading the Data of a Specific Entry

The data section of a specific cache entry can be read by the memory mapping cache access. The longword indicated in the data field of the data array in figure 8.4 is read into the register.

An example when an address is specified in R0 and data is read in R1 is shown below.

```
; R0=H'F100 004C; instruction cache data array access, entry=B'000 0100,
; Way=0, longword address=3
;
MOV.L @R0,R1
```

Bit	Bit Name	Initial Value	R/W	Description
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input is valid. The specification by this bit is valid even when the number of access wait cycle is 0.
				0: External wait input is valid
				1: External wait input is ignored
5 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

• CS4WCR

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	BST	[1:0]	-	-	BW[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R	R	R/W	R/W
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	SW[1:0]		W[3	3:0]		WM	-	-	-	-	HW[1:0]
Initial value:	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
R/W:	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
31 to 22	—	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Table 9.11Relationship between BSZ[1:0], A2/3ROW[1:0], A2/3COL[1:0], and AddressMultiplex Output (3)-2

	Setting					
BSZ [1:0]	A2/3 ROW [1:0]	A2/3 COL [1:0]	_			
10 (16 bits)	10 (13 bits)	10 (10 bits)	-			
Output Pin of This LSI	Row Address Output Cycle	Column Address Output Cycle	SDRAM Pin	Function		
A17	A27	A17		Unused		
A16	A26	A16	_			
A15	A25* ²	A25* ²	A14 (BA1)	Specifies bank		
A14	A24* ²	A24* ²	A13 (BA0)			
A13	A23	A13	A12	Address		
A12	A22	A12	A11			
A11	A21	L/H* ¹	A10/AP	Specifies address/precharge		
A10	A20	A10	A9	Address		
A9	A19	A9	A8			
A8	A18	A8	A7			
A7	A17	A7	A6			
A6	A16	A6	A5			
A5	A15	A5	A4			
A4	A14	A4	A3			
A3	A13	A3	A2			
A2	A12	A2	A1			
A1	A11	A1	A0			
A0	A10	A0		Unused		
Example of con	nected memory					

512-Mbit product (8 Mwords \times 16 bits \times 4 banks, column 10 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

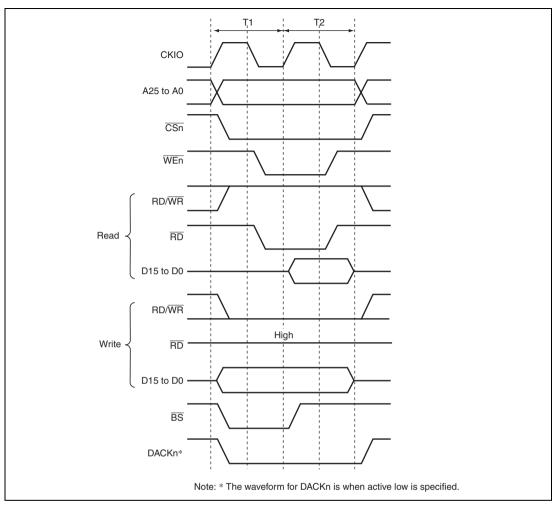


Figure 9.32 Basic Access Timing for SRAM with Byte Selection (BAS = 0)

Bit	Bit Name	Initial Value	R/W	Description
9, 8	PR[1:0]	00	R/W	Priority Mode
				These bits select the priority level between channels when there are transfer requests for multiple channels simultaneously.
				00: Fixed mode 1: CH0 > CH1 > CH2 > CH3 > CH4 > CH5 > CH6 > CH7 > CH8 > CH9 > CH10 > CH11 > CH12 > CH13 > CH14 > CH15
				01: Fixed mode 2: CH0 > CH8 > CH1 > CH9 > CH2 > CH10 > CH3 > CH11 > CH4 > CH12 > CH5 > CH13 > CH6 > CH14 > CH7 > CH15
				10: Setting prohibited
				11: Setting prohibited
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
2	AE	0	R/(W)*	Address Error Flag
				Indicates whether an address error has occurred by this module. When this bit is set, even if the DE bit in CHCR and the DME bit in DMAOR are set to 1, DMA transfer is not enabled. This bit can only be cleared by writing 0 after reading 1.
				0: No address error occurred by this module
				1: Address error occurred by this module
				[Clearing condition]
				• Writing 0 after reading AE = 1

• TSR2_0

Bit:	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	TGFF	TGFE	
Initial value:	1	1	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R	R/(W)*1	R/(W)*1	

Note: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

Bit	Bit Name	Initial Value	R/W	Description
	Dit Name		-	•
7, 6	_	All 1	R	Reserved These bits are always read as 1. The write value should always be 1.
5 to 2	—	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1	TGFF	0	R /(W)* ¹	Compare Match Flag F
				Status flag that indicates the occurrence of compare match between TCNT_0 and TGRF_0.
				[Clearing condition]
				 When 0 is written to TGFF after reading TGFF = 1*²
				[Setting condition]
				 When TCNT_0 = TGRF_0 and TGRF_0 is
				functioning as compare register
0	TGFE	0	R/(W)*1	Compare Match Flag E
				Status flag that indicates the occurrence of compare match between TCNT_0 and TGRE_0.
				[Clearing condition]
				 When 0 is written to TGFE after reading TGFE = 1*²
				[Setting condition]
				 When TCNT_0 = TGRE_0 and TGRE_0 is
				functioning as compare register
Notes:	1. Writing 01	to this bit at	fter reading	g it as 1 clears the flag.

If the next flag is set before TGFA is cleared to 0 after reading TGFA = 1, TGFA remains 1 even when 0 is written to. In this case, read TGFA = 1 again to clear TGFA to 0.

• Examples of Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode

Figures 11.58 to 11.61 show examples of output waveform control in which this module operates in complementary PWM mode and synchronous counter clearing is generated while the WRE bit in TWCR is set to 1. In the examples shown in figures 11.58 to 11.61, synchronous counter clearing occurs at timing (3), (6), (8), and (11) shown in figure 11.56, respectively.

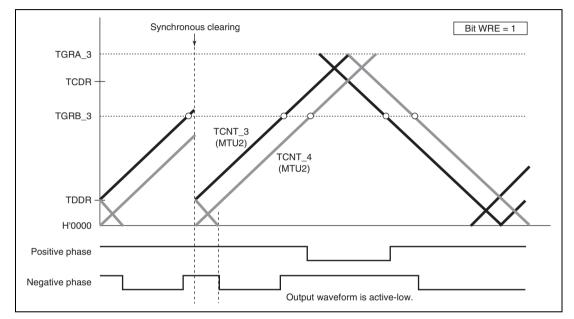


Figure 11.58 Example of Synchronous Clearing in Dead Time during Up-Counting (Timing (3) in Figure 11.56; Bit WRE of TWCR is 1)

14.3.8 Year Counter (RYRCNT)

RYRCNT is used for setting/counting in the BCD-coded year section. The count operation is performed by a carry for each year of the month counter.

The assignable range is from 0000 through 9999 (practically in BCD), otherwise operation errors occur. Carry out write processing after stopping the count operation through the setting of the START bit in RCR2.

Blt	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1000	years			100	years			10 y	ears			1 y	vear	
Initial value	Undefined U	Undefined	Undefined	Undefined l	Jndefined	Undefined	d Undefined	Undefined								
R/W	: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Initi	ial												
Bit	Bit Na	ame	Val	ue	R/	W	Desc	riptio	n							
15 to 12	1000	years	Unc	lefined	IR/	W	Count	ting T	housa	and's l	Positi	on of	Years	;		
11 to 8	100 y	ears	Unc	lefined	IR/	W	Count	ting H	undre	d's P	ositio	n of Y	ears			
7 to 4	10 yea	ars	Unc	lefinec	IR/	W	Count	ting T	en's F	ositio	n of \	/ears				
3 to 0	1 yea	r	Unc	lefined	IR/	W	Count	ting O	ne's F	Positio	on of `	Years				

Bit	Bit Name	Initial Value	R/W	Description
4	BRK	0	R/(W)*	 Break Detection Indicates that a break signal has been detected in receive data. 0: No break signal received [Clearing conditions] BRK is cleared to 0 when the chip is a power-on reset BRK is cleared to 0 when software reads BRK after it has been set to 1, then writes 0 to BRK 1: Break signal received*¹
				 [Setting condition] BRK is set to 1 when data including a framing error is received, and a framing error occurs with space 0 in the subsequent receive data Note: 1. When a break is detected, transfer of the receive data (H'00) to SCFRDR stops after detection. When the break ends and the receive signal becomes mark 1, the transfer of receive data resumes.
3	FER	0	R	 Framing Error Indication Indicates a framing error in the data read from the next receive FIFO data register (SCFRDR) in asynchronous mode. 0: No receive framing error occurred in the next data read from SCFRDR [Clearing conditions] FER is cleared to 0 when the chip undergoes a power-on reset FER is cleared to 0 when no framing error is present in the next data read from SCFRDR 1: A receive framing error occurred in the next data read from SCFRDR. [Setting condition] FER is set to 1 when a framing error is present in the next data read from SCFRDR.

17.4 Operation

In this section, the serial transfer period means a period from the beginning of driving valid data to the fetching of the final valid data, and the QSSL negation period means the idle period.

17.4.1 Overview of Operations

This module is capable of serial transfers in single-/dual-/quad-SPI modes. Table 17.4 gives the features of single-/dual-/quad-SPI modes.

	Single-SPI	Dual-SPI	Quad-SPI
Number of data lines	One input line and one output line	Two IO lines	Four IO lines
Data line direction	Single-directional	Bidirectional	Bidirectional
Simultaneous transmission/reception	Supported	Not supported	Not supported

Table 17.4Features of Each SPI Mode

18.2 Input/Output Pins

Table 18.1 shows the pin configuration.

Table 18.1 Pin Configuration

Pin Name	Symbol	I/O	Function
Serial clock	SCL0 to SCL2	I/O	I ² C serial clock input/output
Serial data	SDA0 to SDA2	I/O	l ² C serial data input/output

Figure 18.2 shows an example of I/O pin connections to external circuits.

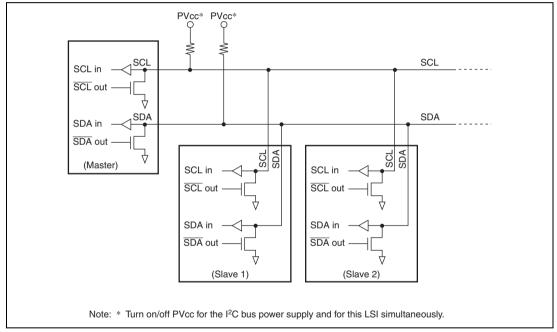


Figure 18.2 External Circuit Connections of I/O Pins

• Transmitting and Receiving in the Order of Padding Bits and Serial Data; with Delay

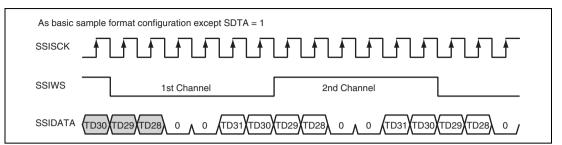


Figure 19.14 Transmitting and Receiving in the Order of Padding Bits and Serial Data; with Delay

• Transmitting and Receiving in the Order of Padding Bits and Serial Data; without Delay

As basic sample format configuration except SDTA = 1 and DEL = 1					
SSISCK					
SSIWS	1st Channel	2nd Channel			
SSIDATA (TD29/TD28) 0 0 (TD31/TD30/TD29/TD28) 0 0 (TD31/TD30/TD29/TD28) 0 0					

Figure 19.15 Transmitting and Receiving in the Order of Padding Bits and Serial Data; without Delay

• Transmitting and Receiving in the Order of Serial Data and Padding Bits; without Delay

·	configuration except DEL = 1		
SSIWS	1st Channel	2nd Channel	1
			TD31 TD30

Figure 19.16 Transmitting and Receiving in the Order of Serial Data and Padding Bits; without Delay

21.3.2 Mailbox Structure

Mailboxes play a role as message buffers to transmit/receive CAN frames. Each Mailbox is comprised of 3 identical storage fields that are 1): Message Control, 2): Local Acceptance Filter Mask, 3): Message Data. In addition some Mailboxes contain the following extra Fields: 4): Time Stamp, 5): Time Trigger configuration and 6): Time Trigger Control. The following table shows the address map for the control, LAFM, data, timestamp, Transmission Trigger Time and Time Trigger Control addresses for each mailbox.

	Address						
	Control0	LAFM	Data	Control1	Time Stamp	Trigger Time	TT control
Mailbox	4 bytes	4 bytes	8 bytes	2 bytes	2 bytes	2 bytes	2 bytes
0 (Receive Only)	100 – 103	104– 107	108 – 10F	110 – 111	112 – 113	No	No
1	120 – 123	124 – 127	128 – 12F	130 – 131	132 – 133	No	No
2	140 – 143	144 – 147	148 – 14F	150 – 151	152 – 153	No	No
3	160 – 163	164 – 167	168 – 16F	170 – 171	172 – 173	No	No
4	180 – 183	184 – 187	188 – 18F	190 – 191	192 – 193	No	No
5	1A0 – 1A3	1A4 – 1A7	1A8 – 1AF	1B0 – 1B1	1B2 – 1B3	No	No
6	1C0 – 1C3	1C4 – 1C7	1C8 – 1CF	1D0 – 1D1	1D2 – 1D3	No	No
7	1E0 – 1E3	1E4 – 1E7	1E8 – 1EF	1F0 – 1F1	1F2 – 1F3	No	No
8	200 – 203	204 – 207	208 – 20F	210 – 211	212 – 213	No	No
9	220 – 223	224 – 227	228 – 22F	230 – 231	232 – 233	No	No
10	240 - 243	244 – 247	248 – 24F	250 – 251	252 – 253	No	No
11	260 - 263	264 – 267	268 – 26F	270 – 271	272 – 273	No	No
12	280 - 283	284 – 287	288 – 28F	290 – 291	292 – 293	No	No
13	2A0 – 2A3	2A4 – 2A7	2A8 – 2AF	2B0 – 2B1	2B2 – 2B3	No	No
14	2C0 - 2C3	2C4 – 2C7	2C8 – 2CF	2D0 – 2D1	2D2 – 2D3	No	No
15	2E0 – 2E3	2E4 – 2E7	2E8 – 2EF	2F0 – 2F1	2F2 – 2F3	No	No
16	300 - 303	304 - 307	308 – 30F	310 – 311	No	No	No
17	320 - 323	324 – 327	328 – 32F	330 - 331	No	No	No
18	340 - 343	344 – 347	348 – 34F	350 – 351	No	No	No

Figure 29.1 shows a block diagram.

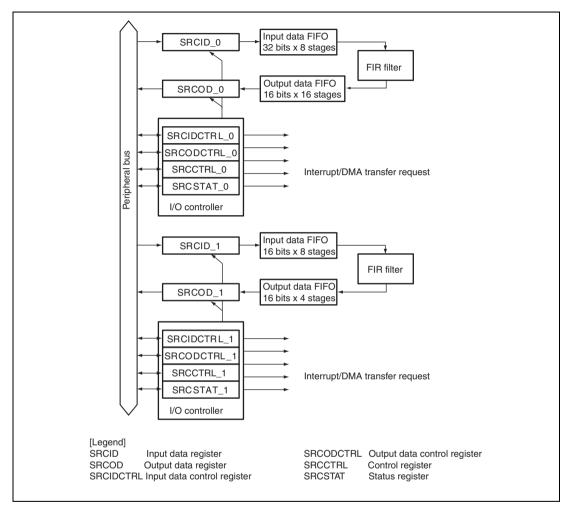


Figure 29.1 Block Diagram

33.3 Operation

33.3.1 Sleep Mode

(1) Transition to Sleep Mode

Executing the SLEEP instruction when the STBY bit in STBCR1 is 0 causes a transition from the program execution state to sleep mode. Although the CPU halts immediately after executing the SLEEP instruction, the contents of its internal registers remain unchanged. The on-chip peripheral modules continue to run in sleep mode. The clock output from the CKIO pin is continued.

(2) Canceling Sleep Mode

Sleep mode is canceled by an interrupt (NMI, IRQ, and on-chip peripheral module), a DMA address error, or a reset (manual reset or power-on reset).

• Canceling by an interrupt

When an NMI, IRQ, or on-chip peripheral module interrupt occurs, sleep mode is canceled and interrupt exception handling is executed. When the priority level of the generated interrupt is equal to or lower than the interrupt mask level that is set in the status register (SR) of the CPU, or the interrupt by the on-chip peripheral module is disabled on the module side, the interrupt request is not accepted and sleep mode is not canceled.

- Canceling by a DMA address error When a DMA address error occurs, sleep mode is canceled and DMA address error exception handling is executed.
- Canceling by a reset

Sleep mode is canceled by a power-on reset or a manual reset.

Module Name	Register Name	Abbreviation	Number of Bits	Address	Access Size
Video display controller 3	Timing control register for vertical sync signal for graphic image	GRA_ VSYNC_TIM	32	H'FFFF3910	8, 16, 32
	AC modulation signal toggle line count	AC_LINE_NUM	32	H'FFFF3914	8, 16, 32
	DE area size register	DE_SIZE	32	H'FFFF3920	8, 16, 32
	DE area start position register	DE_START	32	H'FFFF3924	8, 16, 32
Sampling rate	Input data register_0	SRCID_0	32	H'FFFE7000	16, 32
converter	Output data register_0	SRCOD_0	32	H'FFFE7004	16, 32
	Input data control register_0	SRCIDCTRL_0	16	H'FFFE7008	16
	Output data control register_0	SRCODCTRL_0	16	H'FFFE700A	16
	Control register_0	SRCCTRL_0	16	H'FFFE700C	16
	Status register_0	SRCSTAT_0	16	H'FFFE700E	16
	Input data register_1	SRCID_1	16	H'FFFE7800	16, 32
	Output data register_1	SRCOD_1	32	H'FFFE7804	16, 32
	Input data control register_1	SRCIDCTRL_1	16	H'FFFE7808	16
	Output data control register_1	SRCODCTRL_1	16	H'FFFE780A	16
	Control register_1	SRCCTRL_1	16	H'FFFE780C	16
	Status register_1	SRCSTAT_1	16	H'FFFE780E	16
General	Port A I/O register 1	PAIOR1	16	H'FFFE3810	8, 16, 32*
purpose I/O ports	Port A I/O register 0	PAIOR0	16	H'FFFE3812	8, 16*
pons	Port A data register 1	PADR1	16	H'FFFE3814	8, 16, 32*
	Port A data register 0	PADR0	16	H'FFFE3816	8, 16*
	Port A port register 0	PAPR0	16	H'FFFE381A	8, 16
	Port B control register 5	PBCR5	16	H'FFFE3824	8, 16, 32
	Port B control register 4	PBCR4	16	H'FFFE3826	8, 16
	Port B control register 3	PBCR3	16	H'FFFE3828	8, 16, 32
	Port B control register 2	PBCR2	16	H'FFFE382A	8, 16
	Port B control register 1	PBCR1	16	H'FFFE382C	8, 16, 32
	Port B control register 0	PBCR0	16	H'FFFE382E	8, 16
	Port B I/O register 1	PBIOR1	16	H'FFFE3830	8, 16, 32
	Port B I/O register 0	PBIOR0	16	H'FFFE3832	8, 16
	Port B data register 1	PBDR1	16	H'FFFE3834	8, 16, 32

Section 37 Electrical Characteristics

37.1 Absolute Maximum Ratings

Table 37.1 Absolute Maximum Ratings

Item		Symbol	Value	Unit
Power supply	voltage (I/O)	PV _{cc}	–0.3 to 4.6	V
Power supply	voltage (Internal)	V _{cc}	–0.3 to 1.7	V
PLL power sup	pply voltage	PLLV _{cc}	–0.3 to 1.7	V
Analog power	supply voltage	AV _{cc}	–0.3 to 4.6	V
Analog referen	ce voltage	AV _{ref}	–0.3 to $\mathrm{AV}_{\mathrm{cc}}$ +0.3	V
USB transceive	er analog power supply voltage (I/O)	$USBAPV_{cc}$	–0.3 to 4.6	V
USB transceive	er digital power supply voltage (I/O)	$USBDPV_{cc}$	–0.3 to 4.6	V
USB transceiver analog power supply voltage (internal)		USBAV _{cc}	–0.3 to 1.7	V
USB transceiver digital power supply voltage (internal)		$USBDV_{cc}$	–0.3 to 1.7	V
Power supply for USB 480 MHz (internal)		USBUV _{cc}	–0.3 to 1.7	V
Input voltage	Analog input pin	V _{AN}	–0.3 to AV $_{\rm cc}$ +0.3	V
	VBUS	V _{in}	–0.3 to 5.5	V
	Other input pins	V _{in}	–0.3 to PV_{cc} +0.3	V
Operating temperature	Regular specifications	T _{opr}	-20 to +85	°C
	Wide-range specifications	-	-40 to +85	_
Storage temperature		T _{stg}	-55 to +125	°C

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded.

37.4.17 SD Host Interface Timing

Table 37.23 SD Host Interface Timing

Item	Symbol	Min.	Max.	Unit	Figure
SD_CLK clock cycle	tsdpp	$2 \times t_{\text{pcyc}}$	_	ns	Figure
SD_CLK clock high width	t sdwh	$0.4 imes t_{\text{SDPP}}$	_	ns	37.76
SD_CLK clock low width	tsdwl	$0.4 \times t_{\text{SDPP}}$	_	ns	-
SD_CMD, SD_D3 to SD_D0 output data delay (data transfer mode)	tsdodly	—	14	ns	-
SD_CMD, SD_D3 to SD_D0 input data setup	t sdisu	5	_	ns	-
SD_CMD, SD_D3 to SD_D0 input data hold	t sdih	5		ns	-

Note: t_{pcvc} indicates peripheral clock (P ϕ) cycle.

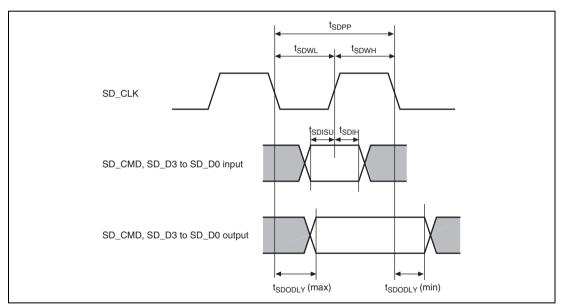


Figure 37.76 SD Card Interface