

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1574-e-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Packages	PDIP	SOIC	TSSOP	SSOP	UQFN
PIC16(L)F1574	•	•	•		•
PIC16(L)F1575	•	•	•		•
PIC16(L)F1578	•	•		•	•
PIC16(L)F1579	•	•		•	•

Note: Pin details are subject to change.

3.3.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

3.3.5 DEVICE MEMORY MAPS

The memory maps are as shown in Table 3-3 through Table 3-13.

FIGURE 3-3: BANKI

BANKED MEMORY PARTITIONING

		BANK5		BANK6		BANK7	
	280h		300h		380h		
S		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)	
	28Bh		30Bh		38Bh		
	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA	
	28Dh	_	30Dh	—	38Dh	—	
	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC	
	28Fh		30Fh	—	38Fh	—	
	290h	_	310h	—	390h	—	
	291h		311h		391h	IOCAP	
	292h		312h		392h	IOCAN	
	293h		313h		393h	IOCAF	
	294h		314h		394h	_	
	295h		315h		395h	—	
	296h		316h		396h	_	
	297h	_	317h	—	397h	IOCCP	
	298h	_	318h	_	398h	IOCCN	
	299h	_	319h	_	399h	IOCCF	
	29Ah	_	31Ah	_	39Ah	_	
	29Bh	_	31Bh	_	39Bh	_	
	29Ch	_	31Ch	_	39Ch	_	
	29Dh	_	31Dh	_	39Dh	_	
_							

_

General Purpose Register 80 Bytes

Accesses 70h – 7Fh

TABLE 3-4: PIC16(L)F1575 MEMORY MAP, BANKS 0-7 BANK0 BANK1

BANK2

0006		0006		100h		1006		2006		2006		200h		2006	Г
00011	Core Registers (Table 3-2)	08011	Core Registers (Table 3-2)	10011	Core Registers (Table 3-2)	10011	Core Registers (Table 3-2)	20011	Core Registers (Table 3-2)	20011	Core Registers (Table 3-2)	30011	Core Registers (Table 3-2)	36011	
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	Ē
00Dh	_	08Dh		10Dh	_	18Dh	_	20Dh	_	28Dh	_	30Dh	_	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	
00Fh	_	08Fh		10Fh	—	18Fh	—	20Fh	_	28Fh	—	30Fh	—	38Fh	
010h	—	090h	—	110h	—	190h	—	210h	—	290h	—	310h	-	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	_	292h	—	312h	_	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h		293h	—	313h	_	393h	
014h		094h	_	114h	CM2CON1	194h	PMDATH	214h		294h	—	314h	_	394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h		295h	—	315h	_	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h		296h	—	316h	_	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	_	317h	_	397h	
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	—	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	—	319h	—	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	_	31Ah	-	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh		29Bh	—	31Bh	_	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch		29Ch	—	31Ch	_	39Ch	
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	_	29Dh	—	31Dh		39Dh	
01Eh	_	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	—	31Eh	_	39Eh	
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh		39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	l
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	F
	Common RAM		Accesses 70h – 7Fh												
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	l

BANK3

BANK4

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1575.

DS40001782C-page 26

TABLE 3-15:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
08Ch	TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	_	1111	1111
08Eh	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	nted							_	_
090h	_	Unimplemen	nted							—	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	TMR2IE	TMR1IE	000000	000000
092h	PIE2	—	C2IE	C1IE	—		—	—	_	-00	-00
093h	PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE		_	—	_	0000	0000
094h	_									—	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUI	N<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRC	CF<3:0>		—	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0q0 0q00	-ddd dddd
09Bh	ADRESL	ADC Result	Register Low	jister Low				xxxx xxxx	uuuu uuuu		
09Ch	ADRESH	ADC Result	Register Hig	egister High						xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>	•		GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>	•	—	_	ADPRE	F<1:0>	000000	000000
09Fh	ADCON2		TRIGS	EL<3:0>		_	_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

PIC16(L)F1574/5/8/9

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

R-0/0	R-0/0	R-0/0	R-0/0	U-0	U-0	U-0	U-0
PWM4IF ⁽¹⁾	PWM3IF ⁽¹⁾	PWM2IF ⁽¹⁾	PWM1IF ⁽¹⁾		—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	it 7 PWM4IF: PWM4 Interrupt Flag bit ⁽¹⁾						
	1 = Interrupt is pending						
	0 = Interrupt	is not pending					
bit 6	PWM3IF: PW	/M3 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending	(1)				
bit 5	PWM2IF: PW	/M2 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt is not pending						
bit 4	bit 4 PWM1IF: PWM1 Interrupt Flag bit ⁽¹⁾						
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

- Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

PIC16(L)F1574/5/8/9

11.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- · TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- · LATx registers (output latch)
- INLVLx (input level control)
- ODCONx registers (open-drain)
- · SLRCONx registers (slew rate

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- · WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 11-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	РОКТВ	PORTC
PIC16(L)F1574	•		•
PIC16(L)F1575	٠		•
PIC16(L)F1578	•	٠	٠
PIC16(L)F1579	•	•	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1:

GENERIC I/O PORT OPERATION

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
		SLRA5	SLRA4		SLRA2	SLRA1	SLRA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	SLRA<5:4>:	PORTA Slew F	Rate Enable b	its			
	For RA<5:4>	pins, respectiv	ely				
	1 = Port pin s	lew rate is limit	ed Im rate				
hit 2	0 = Port pin siews at maximum rate						
DIL 3	it s Unimplemented: Read as U						
bit 2-0	it 2-0 SLRA<2:0>: PORTA Slew Rate Enable bits						
	For RA<2:0>	pins, respectiv	ely				
	$\perp = Port pin sin cl$	iew rate is limit	eu Im rata				
	0 = Port pin si	iews at maximi	uniale				

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 11-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	INLVLA5	INLVLA4	INLVLA3 ⁽¹⁾	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 5-0

INLVLA<5:0>: PORTA Input Level Select bits

- For RA<5:0> pins, respectively
- 1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

Note 1: The INLVLA3 bit selects the input type on this pin only when the MCLR function is not selected. When the MCLR function is selected, the input type for this pin will be ST.

Derinheral	xxxPPS	Default Pir	n Selection	Reset Value (xxxPPS<4:0>)		
Penpherai	Register	PIC16(L)F1578/9	PIC16(L)F1574/5	PIC16(L)F1578/9	PIC16(L)F1574/5	
Interrupt-on-change	INTPPS	RA2	RA2	00010	00010	
Timer 0clock	T0CKIPPS	RA2	RA2	00010	00010	
Timer 1clock	T1CKIPPS	RA5	RA5	00101	00101	
Timer 1 gate	T1GPPS	RA4	RA4	00100	00100	
CWG1	CWG1INPPS	RA2	RA2	00010	00010	
EUSART RX	RXPPS	RB5	RC5	01101	10101	
EUSART CK	CKPPS	RB7	RC4	01111	10100	
ADC Auto-Conversion Trigger	ADCACTPPS	RC4	RC4	10100	10100	

TABLE 12-1:PPS INPUT REGISTER RESET VALUES

Example: ADCACTPPS = 0x14 selects RC4 as the ADC Auto-Conversion Trigger input.

	Output Signal	F	PIC16(L)F1578	:/9	PIC16(L)F1574/5		
RXyPPS<3:0>	Output Signal	PORTA	PORTB	PORTC	PORTA	PORTC	
1111	Reserved	_	—	—	—	—	
1110	Reserved	_	—	—	—	—	
1101	Reserved	—	—	—	—	—	
1100	Reserved		—	—	—	—	
1011	Reserved	_	—	—	—	—	
1010	DT ⁽¹⁾	•	•	•	•	•	
1001	TX/CK ⁽¹⁾	•	•	•	•	•	
1000	CWG1OUTB ⁽¹⁾	•	•	•	•	•	
0111	CWG1OUTA ⁽¹⁾	•	•	•	•	•	
0110	PWM4_out	•	•	•	•	•	
0101	PWM3_out	•	•	•	•	•	
0100	PWM2_out	•	•	•	•	•	
0011	PWM1_out	•	•	•	•	•	
0010	sync_C2OUT	•	•	•	•	•	
0001	sync_C1OUT	•	•	•	•	•	
0000	LATxy	•	•	•	•	•	

TABLE 12-2: AVAILABLE PORTS FOR OUTPUT BY PERIPHERAL⁽²⁾

Note 1: TRIS control is overridden by the peripheral as required.

2: Unsupported peripherals will output a '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCAF	—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	143
IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	143
IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	143
IOCBP ⁽²⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	144
IOCBN ⁽²⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	-	-	_	144
IOCBF ⁽²⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	-	-	_	144
IOCCP	IOCCP7 ⁽²⁾	IOCCP6 ⁽²⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	145
IOCCN	IOCCN7 ⁽²⁾	IOCCN6 ⁽²⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	145
IOCCF	IOCCF7 ⁽²⁾	IOCCF6 ⁽²⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	145
TRISA	—	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	120
TRISC	TRISC7 ⁽²⁾	TRISC7 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
				<u></u>					

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1578/9 only.

17.6 Register Definitions: DAC Control

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0		
DACEN		DACOE	—	DACP	ACPSS<1:0> —				
bit 7							bit 0		
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets		
'1' = Bit is set		'0' = Bit is clear	ed						
bit 7 bit 6 bit 5	DACEN: DAC F 1 = DAC is en 0 = DAC is dis Unimplemente DACOE: DAC	Enable bit abled sabled ed: Read as '0' Voltage Output E	nable bit						
	1 = DAC voltage level is output on the DACOUT1 pin 0 = DAC voltage level is disconnected from the DACOUT1 pin								
bit 4	Unimplemente	ed: Read as '0'							
bit 3-2	DACPSS<1:0> 11 = Reserve 10 = FVR_but 01 = VREF+ pi 00 = VDD	: DAC Positive S d ffer2 in	Source Select bi	its					
bit 1-0	Unimplemente	ed: Read as '0'							

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DACCON0	DACEN	_	DACOE	—	DACPSS<1:0>		_	_	168
DACCON1	—		_		168				

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

20.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

20.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- · TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

FIGURE 20-3: TIMER1 GATE ENABLE MODE

P/M/-0/u	P/M/_0/u	P/M/_0/u	P/\/_0/		P_v/v		P/M_0/u				
	T10D0'			T4000/		T1C9	S<1.0>				
IMR1GE	TIGPOL	IIGIM	TIGSPM	DONE	11GVAL	1103	5<1.02				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	t U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are					
bit 7	TMR1GE: Tin <u>If TMR1ON =</u> This bit is igno <u>If TMR1ON =</u> 1 = Timer1 c 0 = Timer1 c	ner1 Gate Ena <u>0</u> : ored <u>1</u> : ounting is conti ounting is conti	ble bit rolled by the T ss of Timer1 ga	imer1 gate func ate function	tion						
bit 6	T1GPOL: Tin	T1GPOL: Timer1 Gate Polarity bit									
	1 = Timer1 g 0 = Timer1 g	 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low) 									
bit 5	T1GTM: Time	er1 Gate Toggle	e Mode bit								
	1 = Timer1 G 0 = Timer1 G Timer1 gate f	Bate Toggle mo Bate Toggle mo Iip-flop toggles	de is enabled de is disabled on every rising	and toggle flip- g edge.	flop is cleared						
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit							
	1 = Timer1 g 0 = Timer1 g	ate Single-Puls ate Single-Puls	se mode is ena se mode is disa	abled and is cor abled	ntrolling Timer1	gate					
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	itus bit						
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 										
bit 2	T1GVAL: Timer1 Gate Value Status bit Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).										
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits							
	11 = Compar 10 = Compar 01 = Timer0 0 00 = Timer1 9	ator 2 optionall ator 1 optionall overflow output gate pin (T1G)	y synchronize y synchronize : (T0_overflow	d output (C2OL d output (C1OL)	JT_sync) JT_sync)						

REGISTER 20-2: T1GCON: TIMER1 GATE CONTROL REGISTER

27.2 Standard Operating Conditions

The standard operating conditions for any device are defined as: $V \text{DDMIN} \leq V \text{DD} \leq V \text{DDMAX}$ Operating Voltage: Operating Temperature: TA MIN \leq TA \leq TA MAX VDD — Operating Supply Voltage⁽¹⁾ PIC16LF1574/5/8/9 PIC16F1574/5/8/9 TA — Operating Ambient Temperature Range Industrial Temperature TA MIN.....--40°C **Extended Temperature** Ta MIN.....--40°C

Note 1: See Parameter D001, DS Characteristics: Supply Voltage.

FIGURE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

|--|

Standar	Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.		Characteristic	c	Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns		
				With Prescaler	10			ns		
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20			ns		
				With Prescaler	10			ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N		_	ns	N = prescale value	
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20			ns		
		Time	Synchronous, v	vith Prescaler	15			ns		
			Asynchronous	Asynchronous		_	_	ns		
46*	T⊤1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20	_	_	ns		
		Time	Synchronous, v	Synchronous, with Prescaler		_	_	ns		
			Asynchronous		30	_	_	ns		
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value	
			Asynchronous		60	—	—	ns		
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Tosc		7 Tosc	—	Timers in Sync mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 27-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
AD01	NR	Resolution		—	10	bit			
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V		
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V		
AD04	EOFF	Offset Error		±1	±2.5	LSb	VREF = 3.0V		
AD05	Egn	Gain Error		±1	±2.0	LSb	VREF = 3.0V		
AD06	Vref	Reference Voltage	1.8		Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)		
AD07	VAIN	Full-Scale Range	Vss		VREF	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

PIC16(L)F1574/5/8/9

BORV = 0.

FIGURE 28-50: Low-Power Brown-Out Reset Voltage, LPBOR = 0.

Max.

Typical

Temperature (°C)

Min.

Reset Hysteresis, LPBOR = 0.

FIGURE 28-53: POR Rearm Voltage, PIC16F1574/5/8/9 Only.

-40

-20 0 20 40 60 80

1.54 1.52

1.50

1.48 **S**^{1.46} 1.44 1.42

1.40

1.38

1.36

1.34

-60

5.0 5.5 6.0

30.0 PACKAGING INFORMATION

30.1 **Package Marking Information**

14-Lead PDIP (300 mil)

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			2.70
Optional Center Pad Length	Y2			2.70
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X16)	X1			0.35
Contact Pad Length (X16)	Y1			0.80

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A