

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1574-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1574 MEMORY MAP, BANKS 0-7

	BANK0	``	, BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	—	08Dh	—	10Dh	_	18Dh	—	20Dh	—	28Dh	—	30Dh	—	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh		08Fh	_	10Fh	—	18Fh	—	20Fh		28Fh		30Fh		38Fh	
010h	—	090h	—	110h	—	190h	—	210h	_	290h	_	310h	_	390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	_	291h	_	311h	_	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	_	292h	_	312h	_	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h		293h		313h		393h	IOCAF
014h		094h	_	114h	CM2CON1	194h	PMDATH	214h		294h		314h		394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	_	315h	_	395h	_
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	—	296h	—	316h	—	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	—	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	_	29Ah	_	31Ah	_	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh		29Bh		31Bh		39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	_	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh	_	39Eh	_
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	_
020h	General Purpose	0A0h	General Purpose	120h	General Purpose	1A0h	General Purpose	220h	General Purpose	2A0h	General Purpose	320h 32Fh	General Purpose Register 16 Bytes	3A0h	Unimplemented
005	Register 80 Bytes	0551	Register 80 Bytes	105	Register 80 Bytes		Register 80 Bytes	0.051	Register 80 Bytes	0	Register 80 Bytes	330h	Unimplemented Read as '0'	055h	Read as '0'
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h	Common RAM	0F0h	Accesses 70h – 7Fh	170h	Accesses 70h – 7Fh	1F0h	Accesses 70h – 7Fh	270h	Accesses 70h – 7Fh	2F0h	Accesses 70h – 7Fh	370h	Accesses 70h – 7Fh	3F0h	Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1574.

PIC16(L)F1574/5/8/9

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-14 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 0	Value on POR, BOR	Value on all other Resets			
Bank	0-31											
x00h or x80h	INDF0		this location ical register)		xxxx xxxx	uuuu uuuu						
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to ad	ddress data i	memory		XXXX XXXX	uuuu uuuu	
x02h or x82h	PCL	Program C	ounter (PC) I	Least Signifi	cant Byte					0000 0000	0000 0000	
x03h or x83h	STATUS	_			TO	PD	Z	DC	С	1 1000	q quuu	
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu	
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000	
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu	
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000	
x08h or x88h	BSR	_	-	_			BSR<4:0>			0 0000	0 0000	
x09h or x89h	WREG	Working Register									uuuu uuuu	
x0Ahor x8Ah	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter -000 0000 -000 0000									
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	

TABLE 3-14: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4 "Write Protection"** for more information.

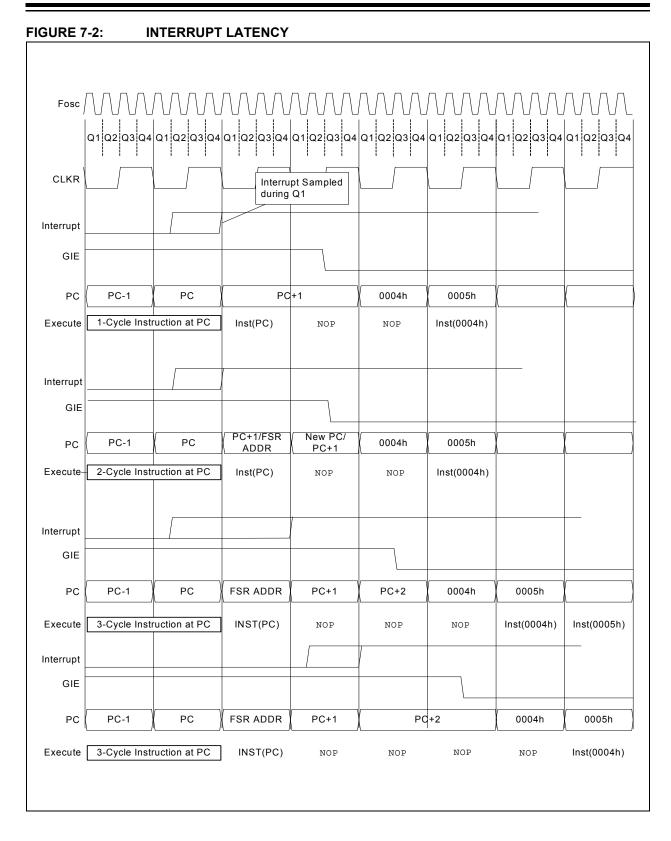
4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC16(L)F157x Memory Programming Specification*" (DS40001766).


4.6 Device ID and Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<5:0>:	Frequency Tunir	ng bits				
	100000 = N	Ainimum frequer	псу				
	•						
	•						
	111111 =						
	000000 = C	Oscillator module	e is running at	the factory-cali	brated frequen	cy.	
	000001 =						
	•						
	•						
	011110 =						
	011111 = 🛚	Maximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

	D 0/0	D 0/0	D 0/0	11.0		11.0	
R-0/0	R-0/0	R-0/0	R-0/0	U-0	U-0	U-0	U-0
PWM4IF ⁽¹⁾	PWM3IF ⁽¹⁾	PWM2IF ⁽¹⁾	PWM1IF ⁽¹⁾	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	PWM4IF: PW	/M4 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt i	is pending					
	0 = Interrupt	is not pending					
bit 6	PWM3IF: PW	/M3 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 5	PWM2IF: PW	/M2 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 4	PWM1IF: PW	/M1 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 3-0	Unimplemen	nted: Read as '	0'				
Note 1. Th	oso hits aro roa	d only Thoy m	ust be cleared	l by addragain	a the Flee regist	ora inaida tha n	aadula

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

- Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

PIC16(L)F1574/5/8/9

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCF	<3:0>		—	SCS	<1:0>	69	
PCON	STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR	79	
STATUS	—	_	_	TO	PD	Z	DC	С	23	
WDTCON	_	_		WDTPS<4:0> SWDTEN						

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—		—	CLKOUTEN	BORE	N<1:0>	—	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC	<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

Devinhevel	xxxPPS	Default Pir	n Selection	Reset Value (xxxPPS<4:0>)			
Peripheral	Register	PIC16(L)F1578/9	PIC16(L)F1574/5	PIC16(L)F1578/9	PIC16(L)F1574/5		
Interrupt-on-change	INTPPS	RA2	RA2	00010	00010		
Timer Oclock	TOCKIPPS	RA2	RA2	00010	00010		
Timer 1clock	T1CKIPPS	RA5	RA5	00101	00101		
Timer 1 gate	T1GPPS	RA4	RA4	00100	00100		
CWG1	CWG1INPPS	RA2	RA2	00010	00010		
EUSART RX	RXPPS	RB5	RC5	01101	10101		
EUSART CK	CKPPS	RB7	RC4	01111	10100		
ADC Auto-Conversion Trigger	ADCACTPPS	RC4	RC4	10100	10100		

TABLE 12-1:PPS INPUT REGISTER RESET VALUES

Example: ADCACTPPS = 0x14 selects RC4 as the ADC Auto-Conversion Trigger input.

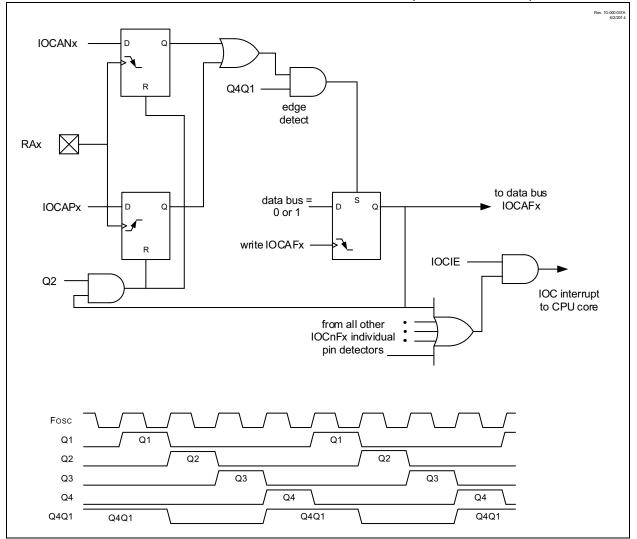

	Output Circal	F	PIC16(L)F1578	/9	PIC16(L)F1574/5
RxyPPS<3:0>	Output Signal	PORTA	PORTB	PORTC	PORTA	PORTC
1111	Reserved	—	—	_	—	—
1110	Reserved	_	—		—	_
1101	Reserved	—	—	—	—	—
1100	Reserved	—	—		—	—
1011	Reserved	_	—		—	_
1010	DT ⁽¹⁾	•	•	•	•	•
1001	TX/CK ⁽¹⁾	•	•	•	•	•
1000	CWG1OUTB ⁽¹⁾	•	•	•	•	•
0111	CWG1OUTA ⁽¹⁾	•	•	•	•	•
0110	PWM4_out	•	•	•	•	•
0101	PWM3_out	•	•	•	•	•
0100	PWM2_out	•	•	•	•	•
0011	PWM1_out	•	•	•	•	•
0010	sync_C2OUT	•	•	•	•	•
0001	sync_C1OUT	•	•	•	•	•
0000	LATxy	•	•	٠	•	•

TABLE 12-2: AVAILABLE PORTS FOR OUTPUT BY PERIPHERAL⁽²⁾

Note 1: TRIS control is overridden by the peripheral as required.

2: Unsupported peripherals will output a '0'.

16.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-5. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of $10k\Omega 5.0V VDD$ TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient<math>= TAMP + TC + TCOFF $= 2\mu s + TC + [(Temperature - 25°C)(0.05\mu s/°C)]$ The value for TC can be approximated with the following equations: $VAPPLIED\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = VCHOLD$;[1] VCHOLD charged to within 1/2 lsb $VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VCHOLD$;[2] VCHOLD charge response to VAPPLIED $VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VCHOLD$;[2] VCHOLD charge response to VAPPLIED $VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VAPPLIED\left(1 - \frac{1}{(2^{n+1}) - 1}\right)$;combining [1] and [2] Note: Where n = number of bits of the ADC. Solving for TC: $TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$

$$= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$

= 1.715µs

Therefore:

$$TACQ = 2\mu s + 1.715\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.96\mu s

Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

19.2 Register Definitions: Option Register

REGISTER 19-1: OPTION_REG: OPTION REGISTER

		-					
R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 bit 6	1 = All weak 0 = Weak pul INTEDG: Inte 1 = Interrupt	ak Pull-Up Ena pull-ups are dis Il-ups are enabl errupt Edge Sel on rising edge on falling edge	abled (except ed by individu ect bit of INT pin				
bit 5	TMR0CS: Tir 1 = Transitior	ner0 Clock Sou on T0CKI pin nstruction cycle	Irce Select bit	l)			
bit 4	TMR0SE: Tir 1 = Incremen	ner0 Source Ec it on high-to-lov it on low-to-high	lge Select bit v transition on	T0CKI pin			
bit 3	PSA: Presca 1 = Prescaler	ler Assignment is not assigne is assigned to	bit d to the Timer	0 module			
bit 2-0		escaler Rate Se					
	Bit	Value Timer0	Rate				
) ((1 1 1 1 1 1 1	000 1:2 001 1:4 010 1:8 011 1:1 100 1:3 101 1:6 110 1:1	6 2 4 28				
TABLE 19-1:	SUMMAR	Y OF REGIST		CIATED WIT	H TIMER0		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGSI	EL<3:0>		-			—	160
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
TMR0	Holding Reg	gister for the	8-bit Timer0) Count			176*		
TRISA		_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	120

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

20.8 Register Definitions: Timer1 Control

REGISTER 20-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	U-0	R/W-0/u		
TMR1CS<1:0>		T1CKPS<1:0>		_	T1SYNC	_	TMR10N		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	TMR1CS<1	:0>: Timer1 Cloc	k Source Sele	ect bits					
		clock source is							
		clock source is	1 (0 0	e)				
01 = Timer1 clock source is system clock (Fosc) 00 = Timer1 clock source is instruction clock (Fosc/4)									
bit 5-4		:0>: Timer1 Inpu		. ,					
	11 = 1:8 Pre	•							
	10 = 1:4 Pre								
	01 = 1:2 Pre	escale value							
	00 = 1:1 Pre	escale value							
bit 3	Unimpleme	nted: Read as '	כי						
bit 2 T1SYNC : Timer1 Synchronization Control bit									
1 = Do not synchronize asynchronous clock input									
	0 = Synchro	onize asynchron	ous clock inpu	t with system c	lock (Fosc)				
bit 1	Unimplemented: Read as '0'								
bit 0	TMR1ON: T	ïmer1 On bit							
	1 = Enables								
	0 = Stops T	imer1 and clears	Timer1 date t	flin-flon					

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203*
SPBRGL	BRG<7:0>							205*	
SPBRGH	BRG<15:8>						205*		
TXREG	EUSART Transmit Data Register							194	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

23.0 16-BIT PULSE-WIDTH MODULATION (PWM) MODULE

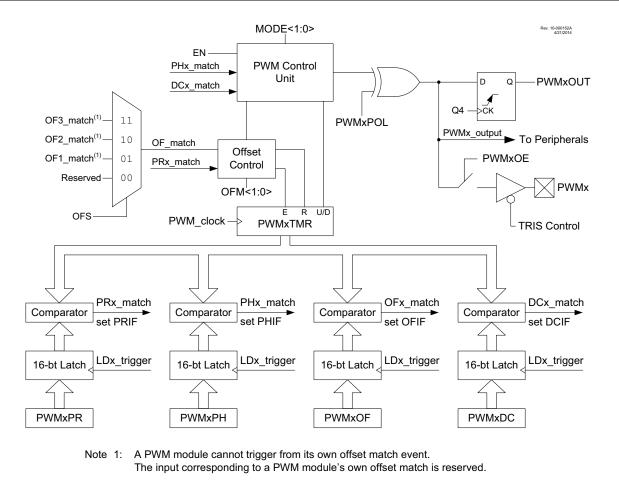
The Pulse-Width Modulation (PWM) module generates a pulse width modulated signal determined by the phase, duty cycle, period, and offset event counts that are contained in the following registers:

- PWMxPH register
- PWMxDC register
- PWMxPR register
- PWMxOF register

Figure 23-1 shows a simplified block diagram of the PWM operation.

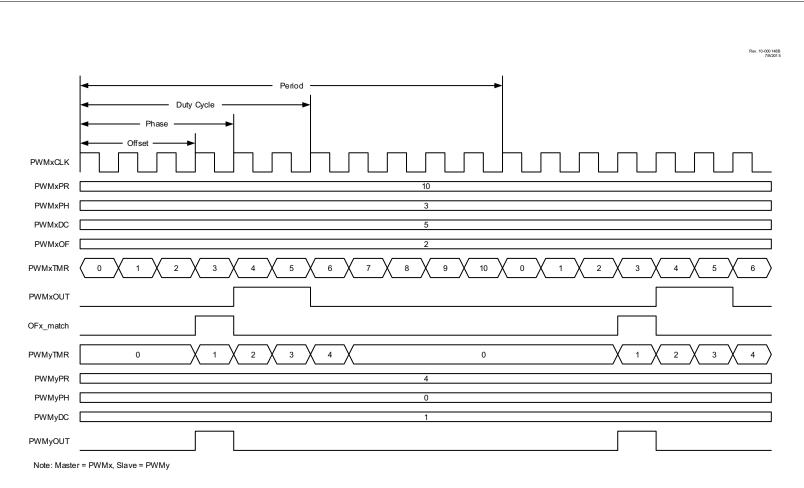
Each PWM module has four modes of operation:

- Standard
- · Set On Match
- Toggle On Match
- · Center-Aligned


For a more detailed description of each PWM mode, refer to **Section 23.2** "**PWM Modes**".

Each PWM module has four offset modes:

- Independent Run
- · Slave Run with Synchronous Start
- · One-Shot Slave with Synchronous Start
- Continuous Run Slave with Synchronous Start and Timer Reset


Using the offset modes, each PWM module can offset its waveform relative to any other PWM module in the same device. For a more detailed description of the offset modes refer to **Section 23.3 "Offset Modes"**.

Every PWM module has a configurable reload operation to ensure all event count buffers change at the end of a period thereby avoiding signal glitches. Figure 23-2 shows a simplified block diagram of the reload operation. For a more detailed description of the reload operation, refer to Section **Section 23.4 "Reload Operation"**.

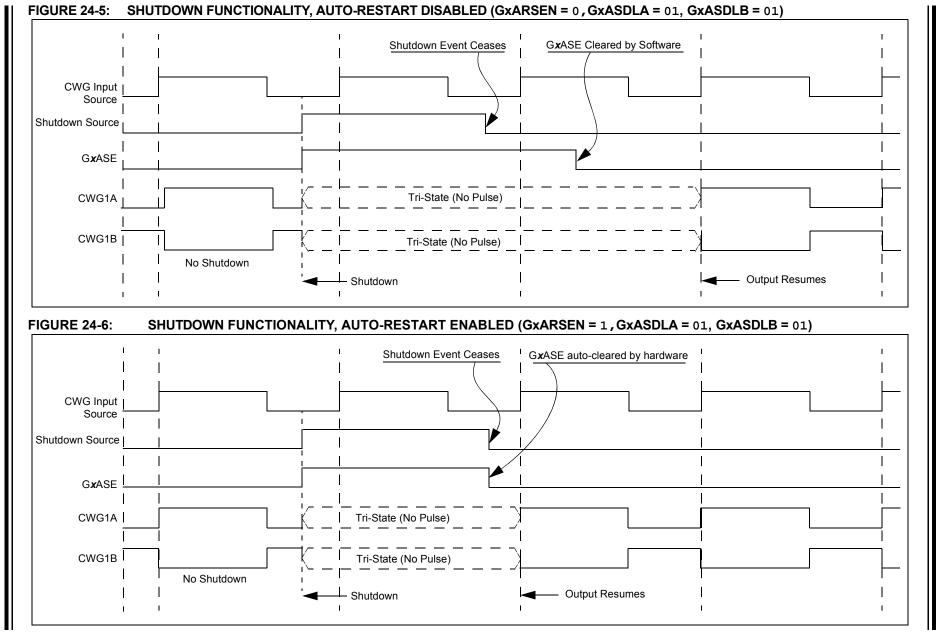
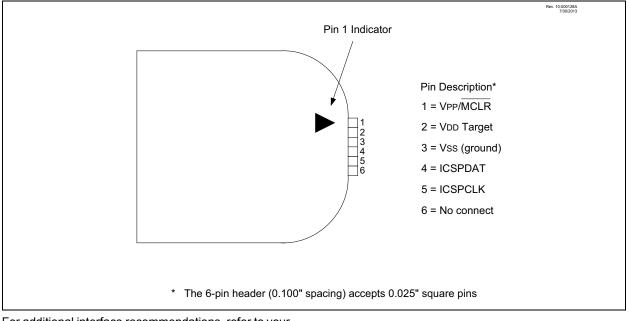


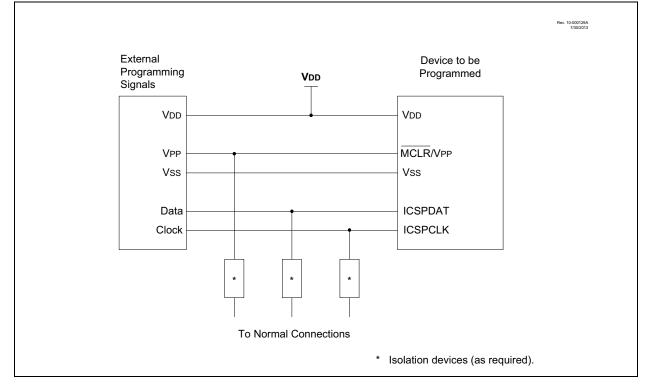
FIGURE 23-1: 16-BIT PWM BLOCK DIAGRAM

FIGURE 23-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM


PIC16(L)F1574/5/8/9

© 2016 Microchip Technology Inc

PIC16(L)F1574/5/8/9



For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information.

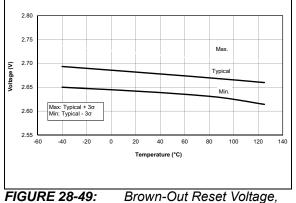
FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS

13	8 7	6		0
OPCODE	d		f (FILE #)	
d = 0 for de d = 1 for de f = 7-bit file	stination f			
Bit-oriented file	register o 10 9	peratio 7 6		0
OPCODE		IT #)	f (FILE #)	-
b = 3-bit bit f = 7-bit file		dress		
Literal and conti	rol operati	ons		
General				
13	8	7		0
OPCODE			k (literal)	
k = 8-bit imr	nediate va	lue		
CALL and GOTO ir	nstructions	only		
<u>13 11</u>		,		0
OPCODE		k (lit	eral)	
k = 11-bit im	imediate va	alue		
	only			
MOVLP instruction 13	Only	76		0
OPCODE			k (literal)	
k = 7-bit imr	nediate va	lue		
MOVLB instruction	only	F	4	0
13 OPCODE		5	4 k (literal	0
k = 5-bit imr		مىا	(,
K – 5-bit IIII		lue		
BRA instruction or		Q		0
BRA instruction or 13 OPCODE	9	8	k (literal)	0
13 OPCODE	9	-	k (literal)	0
13	9	-	k (literal)	0
13 OPCODE k = 9-bit imi	9 mediate va	lue		0
13 OPCODE k = 9-bit imi FSR Offset instru 13	9 mediate va uctions 7	lue 6 5		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE	9 mediate va ictions 7	lue		0
13 OPCODE k = 9-bit imi FSR Offset instru 13	9 mediate va ictions 7 riate FSR	lue 65 n		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropr	9 mediate va ictions 7 riate FSR mediate va	lue 65 n		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropri k = 6-bit imi	9 mediate va ictions 7 riate FSR mediate va	lue 65 n	k (literal	0)
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropri k = 6-bit imi FSR Increment in 13	9 mediate va ictions 7 riate FSR mediate va structions	lue 65 n	k (literal	0)
13 OPCODE k = 9-bit imit FSR Offset instru 13 OPCODE n = approprise k = 6-bit imit FSR Increment init 13 OPCODE n = approprise	9 mediate va ictions 7 riate FSR mediate va structions	lue 65 n	k (literal	0)

PIC16LF1574/5/8/9 PIC16F1574/5/8/9		Standard Operating Conditions (unless otherwise stated)						
Param. No.	Device Characteristics	Min.	Тур†	Max.	Units	Conditions		
						VDD	Note	
D018A*		—	2.3	2.8	mA	3.0	Fosc = 32 MHz, HFINTOSC (Note 3)	
D018A*		—	2.5	2.9	mA	3.0	Fosc = 32 MHz,	
		—	2.6	3.0	mA	5.0	HFINTOSC (Note 3)	
D019A		—	2.0	2.2	mA	3.0	Fosc = 32 MHz, External Clock (ECH), High-Power mode (Note 3)	
D019A		—	2.1	2.3	mA	3.0	Fosc = 32 MHz,	
		—	2.2	2.7	mA	5.0	External Clock (ECH), High-Power mode (Note 3)	
D019B		—	2.6	16	μA	1.8	Fosc = 32 kHz,	
		—	5.0	22	μA	3.0	External Clock (ECL), Low-Power mode	
D019B			14	23	μA	2.3	Fosc = 32 kHz,	
			18	29	μA	3.0	External Clock (ECL), Low-Power mode	
		_	20	30	μA	5.0		
D019C			21	29	μA	1.8	Fosc = 500 kHz,	
		_	35	44	μA	3.0	External Clock (ECL), Low-Power mode	
D019C		_	34	46	μA	2.3	Fosc = 500 kHz,	
		_	43	59	μA	3.0	External Clock (ECL), Low-Power mode	
		_	49	61	μA	5.0		

SUPPLY CURRENT (IDD)^(1,2) (CONTINUED) **TABLE 27-2**:

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: PLL required for 32 MHz operation.

PIC16(L)F1574/5/8/9

BORV = 0.

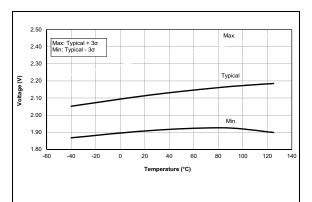
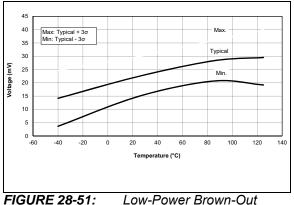
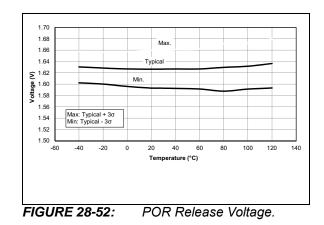



FIGURE 28-50: Low-Power Brown-Out Reset Voltage, LPBOR = 0.


Max.

Typical

Temperature (°C)

Min.

Reset Hysteresis, LPBOR = 0.

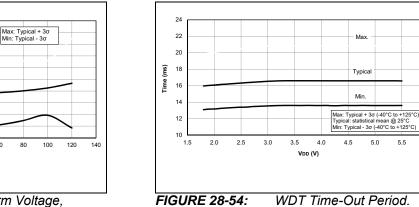


FIGURE 28-53: POR Rearm Voltage, PIC16F1574/5/8/9 Only.

-40

-20 0 20 40 60 80

1.54 1.52

1.50

1.48 **S**^{1.46} 1.44 1.42

1.40

1.38

1.36

1.34

-60

5.0 5.5 6.0