

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1574-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 26.0 "Instruction Set Summary").

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
_		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7	•			•		•	bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set '0' = Bit is cleared			q = Value depends on condition						

TO: Time-Out bit
 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
PD: Power-Down bit
 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
Z: Zero bit
 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

TABLE 3-8:PIC16(L)F1575/9 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers (Table 3-2)
40Bh		48Bh	(10010-0-2)	50Bh	(10010-0-2)	58Bh	(10010-0-2)	60Bh	(10010 0 2)	68Bh	(10010 0 2)	70Bh	(10010 0 2)	78Bh	(10010-0-2)
40Ch	—	48Ch	_	50Ch		58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	—	48Dh	—	50Dh		58Dh		60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh		58Eh		60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	—	48Fh	—	50Fh		58Fh		60Fh	—	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h	CWG1DBR	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	—	513h		593h		613h	—	693h	CWG1CON0	713h	—	793h	—
414h	—	494h	—	514h		594h		614h	—	694h	CWG1CON1	714h	—	794h	—
415h	—	495h		515h	—	595h	_	615h	—	695h	CWG1CON2	715h	—	795h	_
416h	—	496h	_	516h	—	596h	—	616h	—	696h	—	716h	—	796h	—
417h	—	497h	—	517h		597h		617h	—	697h	—	717h	—	797h	—
418h	—	498h	_	518h		598h		618h	—	698h	—	718h	—	798h	—
419h	—	499h	_	519h		599h		619h	—	699h	—	719h	—	799h	—
41Ah	—	49Ah		51Ah	—	59Ah	_	61Ah	—	69Ah	—	71Ah	—	79Ah	_
41Bh	—	49Bh		51Bh	—	59Bh	_	61Bh	—	69Bh	—	71Bh	—	79Bh	_
41Ch	—	49Ch	—	51Ch		59Ch		61Ch	—	69Ch	—	71Ch	—	79Ch	—
41Dh	—	49Dh	_	51Dh	—	59Dh		61Dh	—	69Dh	—	71Dh	—	79Dh	—
41Eh	—	49Eh	_	51Eh		59Eh		61Eh	—	69Eh	—	71Eh	—	79Eh	—
41Fh	—	49Fh		51Fh		59Fh		61Fh	—	69Fh	—	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose Register	6A0h		720h		7A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	63Fh 640h	32 Bytes		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh	Reau as 0	6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh						
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

PIC16(L)F1574/5/8/9

FIGURE 3-9: INDIRECT ADDRESSING

4.2 Register Definitions: Configuration Words

R/P-1 U-1 U-1 R/P-1 R/P-1 U-1 BOREN<1:0>(1) CLKOUTEN bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1 R/P-1** U-1 R/P-1 CP(2) PWRTE⁽¹⁾ MCLRE WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as '1' bit 11 **CLKOUTEN:** Clock Out Enable bit 1 = OFF - CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin 0 = ON - CLKOUT function is enabled on CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ - Brown-out Reset enabled. The SBOREN bit is ignored. 11 = ON 10 = SLEEP - Brown-out Reset enabled while running and disabled in Sleep. The SBOREN bit is ignored. 01 = SBODEN- Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = OFF- Brown-out Reset disabled. The SBOREN bit is ignored. bit 8 Unimplemented: Read as '1' CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = OFF – Code protection off. Program Memory can be read and written. 0 = ON - Code protection on. Program Memory cannot be read or written externally. bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (ON): This bit is ignored. MCLR/VPP pin function is MCLR; Weak pull-up enabled. If LVP bit = 0 (OFF): $1 = ON - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = OFF – MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of pin's WPU control bit. **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = OFF-PWRT disabled 0 = ON - PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit bit 4-3 - WDT enabled. SWDTEN is ignored. 11 = ON 10 = SLEEP - WDT enabled while running and disabled in Sleep. SWDTEN is ignored. 01 = SWDTEN-WDT controlled by the SWDTEN bit in the WDTCON register 00 = OFF- WDT disabled. SWDTEN is ignored. bit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 = ECM01 = ECL- External Clock, Low-Power mode: CLKI on CLKI 00 = INTOSC-I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

REGISTER 4-1: CONFIGURATION WORD 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWM4IE	PWM3IE	PWM2IE	PWM1IE				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncl	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWM4IE: PW	/M4 Interrupt E	nable bit				
	1 = Enables	the PWM4 inte	rrupt				
	0 = Disables	the PWM4 inte	errupt				
bit 6	PWM3IE: PW	/M3 Interrupt E	nable bit				
	1 = Enables	the PWM3 inte	rrupt				
	0 = Disables	the PWM3 inte	errupt				
bit 5	PWM2IE: PW	/M2 Interrupt E	nable bit				
	1 = Enables	the PWM2 inte	rrupt				
	0 = Disables	the PWM2 inte	errupt				
bit 4	PWM1IE: PW	/M1 Interrupt E	nable bit				
	1 = Enables the PWM1 interrupt						
	0 = Disables the PWM1 interrupt						
bit 3-0 Unimplemented: Read as '0'							
Note: Bit PEIF of the INTCON register must be							
set to enable any peripheral interrupt.							

PIC16(L)F1574/5/8/9

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

;;;;;;	This 1. 64 2. Ea store 3. A 4. AI	write routi bytes of d ach word of d in little valid start DDRH and ADD	ne assumes the fo ata are loaded, s data to be writte endian format ing address (the RL are located in	ollowing: starting at the address in DATA_ADDR en is made up of two adjacent bytes in DATA_ADDR, Least Significant bits = 00000) is loaded in ADDRH:ADDRL n shared data memory 0x70 - 0x7F (common RAM)
;		BCF BANKSEL	INTCON,GIE ; PMADRH ;	Disable ints so required sequences will execute properly Bank 3
		MOVE	ADDRH.W	Load initial address
		MOVWF	PMADRH ;	
		MOVF	ADDRL,W ;	
		MOVWF	PMADRL ;	
		MOVLW	LOW DATA_ADDR ;	Load initial data address
		MOVWF	FSROL ;	
		MOVLW	HIGH DATA_ADDR ;	Load initial data address
		MOVWF	FSROH ;	
		BCF	PMCON1,CFGS ;	Not configuration space
		BSF	PMCON1,WREN ;	Enable writes
		BSF	PMCON1,LWLO ;	Only Load Write Latches
LC	OP			
		MOVIW	FSR0++ ;	Load first data byte into lower
		MOVWF	PMDATL ;	
		MOVIW	FSR0++ ;	Load second data byte into upper
		MOVWF	PMDATH ;	
		MOVF	PMADRL,W ;	Check if lower bits of address are '00000'
		XORLW	0x1F ;	Check if we're on the last of 32 addresses
		ANDLW	0x1F ;	
		BTFSC	STATUS, Z ;	Exit if last of 32 words,
		GOTO	START_WRITE ;	
		MOVLW	55h ;	Start of required write sequence:
		MOVWF	PMCON2 ;	Write 55h
	ed See	MOVLW	0AAh ;	
	uir	MOVWF	PMCON2 ;	Write AAh
	eqi	BSF	PMCON1,WR ;	Set WR bit to begin write
	щω	NOP	;	NOP instructions are forced as processor
			;	loads program memory write latches
		NOP	'	
		INCE	DMADRI, F	Still loading latches Increment address
		COTO	LOOP :	Write next latches
		9010	LOOF /	WITCH HEAT TATCHES
SI	ART V	RITE		
		BCF	PMCON1,LWLO ;	No more loading latches - Actually start Flash program
			;	memory write
	<u> </u>			
		MOVLW	55h ;	Start of required write sequence:
		MOVWF	PMCON2 ;	Write 55h
	g g	MOVLW	0AAh ;	
	uire Jen	MOVWF	PMCON2 ;	Write AAh
	edi	BSF	PMCON1,WR ;	Set WR bit to begin write
	жŵ	NOP	;	NOP instructions are forced as processor writes
			;	all the program memory write latches simultaneously
		NOP	;	to program memory.
	L		;	After NOPs, the processor
			;	stalls until the self-write process in complete
			;	after write processor continues with 3rd instruction
		BCF	PMCON1,WREN ;	Disable writes
		BSF	INTCON,GIE ;	Enable interrupts

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123
LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	121
ODCONA	_	_	ODA5	ODA4	_	ODA2	ODA1	ODA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	120
SLRCONA	_	_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	123
TRISA	—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	120
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	122

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.**Note 1:**Unimplemented, read as '1'.

TABLE 11-3: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	_	_	—	—	CLKOUTEN	BORE	N<1:0>	_	50
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		50

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

REGISTER 11-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
—	—	ANSB5	ANSB4	—	—		—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3-0	Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—	
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

R/M/_0/u	R/M/_0/u	R/M/_0/u	R/\\/_0/u		R_v/v	R/M/_0/u	R/M/_0/u	
	T10D0'			T4000/		T109	S<1.0>	
IMR1GE	TIGPOL	IIGIM	TIGSPM	DONE	11GVAL			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are		
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function								
bit 6	T1GPOL: Tin	ner1 Gate Pola	rity bit					
	1 = Timer1 g 0 = Timer1 g	ate is active-hi ate is active-lo	gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)			
bit 5	T1GTM: Time	er1 Gate Toggle	e Mode bit					
	1 = Timer1 G 0 = Timer1 G Timer1 gate f	Bate Toggle mo Bate Toggle mo Iip-flop toggles	de is enabled de is disabled on every rising	and toggle flip- g edge.	flop is cleared			
bit 4	T1GSPM: Timer1 Gate Single-Pulse Mode bit							
	 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled 							
bit 3	T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit							
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 							
bit 2	T1GVAL: Tim	ner1 Gate Value	e Status bit					
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).							
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits				
	11 = Comparator 2 optionally synchronized output (C2OUT_sync) 10 = Comparator 1 optionally synchronized output (C1OUT_sync) 01 = Timer0 overflow output (T0_overflow) 00 = Timer1 gate pin (T1G)							

REGISTER 20-2: T1GCON: TIMER1 GATE CONTROL REGISTER

22.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 22-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

22.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 22-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

22.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

22.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

22.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 22.5.1.2 "Clock Polarity**".

22.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

22.3 Register Definitions: EUSART Control

REGISTER 22-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
			K				
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CSRC: Clock Asynchronou Don't care Synchronous 1 = Master r 0 = Slave m	: Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock from	bit nerated intern n external sou	ally from BRG)		
bit 6	TX9: 9-bit Transmit 1 = Selects 9 0 = Selects 9	ansmit Enable t 9-bit transmissi 8-bit transmissi	bit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ enabled disabled)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ct bit				
bit 3	SENDB: Sen Asynchronouu 1 = Send Syn 0 = Sync Bree Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne eak transmissio <u>mode</u> :	cter bit xt transmissic n completed	on (cleared by I	nardware upon o	completion)	
bit 2	BRGH: High Asynchronouu 1 = High spee 0 = Low spee Synchronous Unused in thi	Baud Rate Sele s mode: ed ed <u>mode:</u> s mode	ect bit				
bit 1	TRMT: Trans 1 = TSR emp 0 = TSR full	mit Shift Regist oty	er Status bit				
bit 0	TX9D: Ninth I Can be addre	bit of Transmit ess/data bit or a	Data ı parity bit.				
Note 1: SR	REN/CREN over	rides TXEN in	Sync mode.				

23.1 Fundamental Operation

The PWM module produces a 16-bit resolution pulse width modulated output.

Each PWM module has an independent timer driven by a selection of clock sources determined by the PWMxCLKCON register (Register 23-4). The timer value is compared to event count registers to generate the various events of a the PWM waveform, such as the period and duty cycle. For a block diagram describing the clock sources refer to Figure 23-3.

Each PWM module can be enabled individually using the EN bit of the PWMxCON register, or several PWM modules can be enabled simultaneously using the mirror bits of the PWMEN register.

The current state of the PWM output can be read using the OUT bit of the PWMxCON register. In some modes this bit can be set and cleared by software giving additional software control over the PWM waveform. This bit is synchronized to Fosc/4 and therefore does not change in real time with respect to the PWM_clock.

Note:	If PWM_clock > Fosc/4, the OUT bit may
	not accurately represent the output state of
	the PWM.

PWM CLOCK SOURCE BLOCK DIAGRAM

23.1.1 PWMx PIN CONFIGURATION

All PWM outputs are multiplexed with the PORT data latch, so the pins must also be configured as outputs by clearing the associated PORT TRIS bits.

The slew rate feature may be configured to optimize the rate to be used in conjunction with the PWM outputs. High-speed output switching is attained by clearing the associated PORT SLRCON bits.

The PWM outputs can be configured to be open-drain outputs by setting the associated PORT ODCON bits.

23.1.2 PWMx Output Polarity

The output polarity is inverted by setting the POL bit of the PWMxCON register. The polarity control affects the PWM output even when the module is not enabled.

FIGURE 23-8: INDEPENDENT RUN MODE TIMING DIAGRAM

FIGURE 23-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

FIGURE 23-13:

© 2016 Microchip Technology Inc

PIC16LF1574/5/8/9		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode								
PIC16F1574/5/8/9		Low-Power Sleep Mode, VREGPM = 1								
Param.	Device Characteristics	Min.	Typ†	Max.	Max.	Units		Conditions		
NO.				+85°C	+125°C		VDD	Note		
D022	Base IPD	_	0.10	1	8	μA	1.8	WDT, BOR, and FVR disabled, all		
		—	0.10	2	9	μA	3.0	Peripherals Inactive		
D022	Base IPD		0.3	3	10	μA	2.3	WDT, BOR, and FVR disabled, all		
			0.4	4	12	μA	3.0	Peripherals inactive,		
		—	0.5	6	15	μA	5.0	VREGPM = 1		
D022A	Base IPD	—	10.4	16	18	μA	2.3	WDT, BOR, and FVR disabled, all		
		—	12.7	18	20	μA	3.0	Peripherals inactive,		
		—	13.8	21	26	μA	5.0	VREGPM = 0		
D023		_	0.4	2	9	μA	1.8	WDT Current		
		_	0.6	3	10	μA	3.0	1		
D023		—	0.6	6	15	μA	2.3	WDT Current		
		—	0.7	7	20	μA	3.0]		
		_	0.9	8	22	μA	5.0	7		
D023A		—	15	28	30	μA	1.8	FVR Current		
		—	26	33	34	μA	3.0			
D023A		_	19	28	30	μA	2.3	FVR Current		
		_	22	35	36	μA	3.0			
		—	23	38	41	μA	5.0			
D024		—	7.5	17	20	μA	3.0	BOR Current		
D024		—	8.1	17	30	μA	3.0	BOR Current		
		—	9.2	20	40	μA	5.0			
D24A		—	0.3	4	10	μA	3.0	LPBOR Current		
D24A		_	0.5	5	14	μA	3.0	LPBOR Current		
		—	0.6	8	17	μA	5.0			
D026		—	0.1	1.5	9	μA	1.8	ADC Current (Note 3),		
		—	0.1	2.7	10	μA	3.0	No conversion in progress		
D026		—	0.3	4	11	μA	2.3	ADC Current (Note 3),		
		—	0.4	5	13	μA	3.0	No conversion in progress		
		—	0.5	8	16	μA	5.0			
D026A*		_	288		—	μA	1.8	ADC Current (Note 3),		
		_	288			μA	3.0	Conversion in progress		
D026A*		_	322	—	—	μA	2.3	ADC Current (Note 3),		
			322	—	—	μA	3.0	Conversion in progress		
		—	322	_	_	μA	5.0			

TABLE 27-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

30.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensior	n Limits	MIN	NOM	MAX			
Number of Pins	N		14				
Pitch	е		.100 BSC				
Top to Seating Plane	Α	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.735	.750	.775			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-094C Sheet 1 of 2