

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1574t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

FIGURE 2-1: CORE BLOCK DIAGRAM

- Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

TABLE 3-8:PIC16(L)F1575/9 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers (Table 3-2)
40Bh		48Bh	(10010-0-2)	50Bh	(10010-0-2)	58Bh	(10010-0-2)	60Bh	(10010 0 2)	68Bh	(10010 0 2)	70Bh	(10010 0 2)	78Bh	(10010-0-2)
40Ch	—	48Ch	_	50Ch	—	58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	—	48Dh	—	50Dh		58Dh		60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh		58Eh		60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	—	48Fh	—	50Fh		58Fh		60Fh	—	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h	CWG1DBR	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	—	513h		593h		613h	—	693h	CWG1CON0	713h	—	793h	—
414h	—	494h	—	514h		594h		614h	—	694h	CWG1CON1	714h	—	794h	—
415h	—	495h		515h	—	595h	_	615h	—	695h	CWG1CON2	715h	—	795h	_
416h	—	496h	_	516h		596h	—	616h	—	696h	—	716h	—	796h	—
417h	—	497h	—	517h		597h		617h	—	697h	—	717h	—	797h	—
418h	—	498h	_	518h		598h		618h	—	698h	—	718h	—	798h	—
419h	—	499h	_	519h		599h		619h	—	699h	—	719h	—	799h	—
41Ah	—	49Ah		51Ah	—	59Ah	_	61Ah	—	69Ah	—	71Ah	—	79Ah	_
41Bh	—	49Bh		51Bh	—	59Bh	_	61Bh	—	69Bh	—	71Bh	—	79Bh	_
41Ch	—	49Ch	—	51Ch		59Ch		61Ch	—	69Ch	—	71Ch	—	79Ch	—
41Dh	—	49Dh	_	51Dh	—	59Dh	—	61Dh	—	69Dh	—	71Dh	—	79Dh	—
41Eh	—	49Eh	_	51Eh		59Eh		61Eh	—	69Eh	—	71Eh	—	79Eh	—
41Fh	—	49Fh		51Fh		59Fh		61Fh	—	69Fh	—	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose Register	6A0h		720h		7A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	63Fh 640h	32 Bytes		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh	Reau as 0	6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh						
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable I	oit			
	1 = Enables t 0 = Disables f	he Timer1 gate the Timer1 gate	e acquisition in e acquisition i	nterrupt nterrupt			
bit 6	ADIE: Analog	j-to-Digital Con	verter (ADC)	Interrupt Enabl	e bit		
	1 = Enables t	he ADC interru	pt				
	0 = Disables	the ADC interru	upt				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
	1 = Enables t 0 = Disables t	he USART rec the USART rec	eive interrupt eive interrupt:				
bit 4	TXIE: USART	Transmit Inter	rupt Enable b	oit			
	1 = Enables t	he USART trar	nsmit interrupt				
	0 = Disables	the USART tra	nsmit interrup	t			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Ei	nable bit			
	1 = Enables t 0 = Disables t	he Timer2 to P the Timer2 to F	R2 match inte R2 match inte	errupt errupt			
bit 0	TMR1IE: Time	er1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t 0 = Disables t	he Timer1 over the Timer1 ove	flow interrupt	t			
Note: Bit	PEIE of the IN	TCON register	must be				
set	t to enable any p	peripheral inter	rupt.				

REGISTER 7-2:	PIE1: PERIPHERAL	INTERRUPT I	ENABLE REGISTER	1
REGISTER /-2.	FIET. FERIFIERAL	INTERROFT	ENABLE REGISTER	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWM4IE	PWM3IE	PWM2IE	PWM1IE				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncl	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWM4IE: PW	/M4 Interrupt E	nable bit				
	1 = Enables	the PWM4 inte	rrupt				
	0 = Disables	the PWM4 inte	errupt				
bit 6	PWM3IE: PW	/M3 Interrupt E	nable bit				
	1 = Enables	the PWM3 inte	rrupt				
	0 = Disables	the PWM3 inte	errupt				
bit 5	PWM2IE: PW	/M2 Interrupt E	nable bit				
	1 = Enables	the PWM2 inte	rrupt				
	0 = Disables	the PWM2 inte	errupt				
bit 4	PWM1IE: PW	/M1 Interrupt E	nable bit				
	1 = Enables	the PWM1 inte	rrupt				
	0 = Disables	the PWM1 inte	errupt				
bit 3-0	Unimplemen	ted: Read as '	0'				
Note: Bit	PEIE of the IN	TCON register	must be				
se	t to enable any	peripheral inter	rupt.				

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1574		
PIC16(L)F1575	20	22
PIC16(L)F1578	32 32	
PIC16(L)F1579		

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

REGISTER 11-14: ODCONB: PORTB OPEN DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
ODB7	ODB6	ODB5	ODB4		—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared			ared					

bit 7-4	ODB<7:4>: PORTB Open-Drain Enable bits
	For RB<7.4> pins, respectively
	0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3-0	Unimplemented: Read as '0'

REGISTER 11-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	SLRB<7:4>: PORTB Slew Rate Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate
bit 3-0	Unimplemented: Read as '0'

REGISTER 11-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—
bit 7							bit 0

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	Legend:		
$y = \text{Pit}$ is unchanged $y = \text{Pit}$ is unknown $p/p = \sqrt{2}y_0$ at POP and POP (2) at all other Popets	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
	u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set '0' = Bit is cleared	'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 INLVLB<7:4>: PORTB Input Level Select bits For RB<7:4> pins, respectively 1 = ST input used for port reads and interrupt-on-change 0 = TTL input used for port reads and interrupt-on-change

bit 3-0 Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	_	ANSB5	ANSB4	_	_		—	127
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—	128
LATB	LATB7	LATB6	LATB5	LATB4	—	—	—	—	126
ODCONB	ODB7	ODB6	ODB5	ODB4	—	—	—	—	128
PORTB	RB7	RB6	RB5	RB4	—	—	—	—	126
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—	128
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	128
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	127

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0
bit 7							bit 0
Legend:							
R = Readable bit	e bit W = Writable bit			U = Unimplemented bit, read as '0'			
u = Bit is unchang	changed x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets			Resets			
'1' = Bit is set		'0' = Bit is cleare	ed				

REGISTER 11-22: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

bit 7-0

ODC<7:0>: PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
bit 7	-						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits⁽¹⁾ For RC<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

Note 1: SLRC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits⁽¹⁾

For RC<7:0> pins, respectively

1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

Note 1: INLVLC<7:6> are available on PIC16(L)F1578/9 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PPSLOCK	—	—	—	—	—	—		PPSLOCKED	138
INTPPS	—	—	—			INTPPS<4:	0>		137
T0CKIPPS	_	_				T0CKIPPS<	4:0>		137
T1CKIPPS	_	_	_			T1CKIPPS<	4:0>		137
T1GPPS	_	_				T1GPPS<4	:0>		137
CWG1INPPS	_	_			С	WG1INPPS	<4:0>		137
RXPPS	_	_	_			RXPPS<4:	0>		137
CKPPS	—	—	—			CKPPS<4:	0>		137
ADCACTPPS	—	—	—		A	DCACTPPS	<4:0>		137
RA0PPS	—	—	—	—		RA0F	PS<3:0>		137
RA1PPS	_	—	—	—		RA1F	PS<3:0>		137
RA2PPS	_	—	—	—		RA2F	PS<3:0>		137
RA4PPS	—	—	—	—		RA4F	PS<3:0>		137
RA5PPS	_	—	—	—		RA5F	PS<3:0>		137
RB4PPS ⁽¹⁾	_	—	—	—		RB4F	PS<3:0>		137
RB5PPS ⁽¹⁾	_	—	—	—		RB5F	PS<3:0>		137
RB6PPS ⁽¹⁾	_	—	—	—		RB6F	PS<3:0>		137
RB7PPS ⁽¹⁾	_	—	—	—		RB7F	PS<3:0>		137
RC0PPS	_	—	—	—		RC0F	PS<3:0>		137
RC1PPS	—	—	—	—		RC1F	PS<3:0>		137
RC2PPS	—	—	—	—		RC2F	PS<3:0>		137
RC3PPS	_	—	—	—		RC3F	PS<3:0>		137
RC4PPS	—	—	—	—		RC4F	PS<3:0>		137
RC5PPS	—	—	—	—		RC5F	PS<3:0>		137
RC6PPS ⁽¹⁾	_	—	—	—		RC6F	PS<3:0>		137
RC7PPS ⁽¹⁾		—	_	—		RC7F	PS<3:0>		137

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Note 1: PIC16(L)F1578/9 only.

PIC16(L)F1574/5/8/9

FIGURE 20-4: TIMER1 GATE TOGGLE MODE

TMR1GE	
T1GPOL	
T1GTM	
t1g_in	
T1GVAL	
Timer N $(N+1)(N+2)(N+3)(N+4)$	$\underbrace{\times N+5}_{N+6} \underbrace{\times N+7}_{N+8} \underbrace{\times N+8}_{N+7} \underbrace{\times N+8}_{N+8} \times $

FIGURE 20-5: TIMER1 GATE SINGLE-PULSE MODE

22.3 Register Definitions: EUSART Control

REGISTER 22-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	÷			·	•		bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	CSRC: Clock	Source Select	bit				
	Asynchronou	<u>s mode</u> :					
	Don't care						
	<u>Synchronous</u>	mode:					
	1 = Master r	node (clock ge	nerated interr	ally from BRG)		
	0 = Slave m	ode (clock from	n external sou	rce)			
bit 6	TX9: 9-bit Tra	ansmit Enable b	bit				
	1 = Selects	9-bit transmissi 8-bit transmissi	on				
bit 5		mit Enable bit(1)				
DIL 5	1 = Transmit						
	0 = Transmit	disabled					
bit 4	SYNC: EUSA	ART Mode Sele	ct bit				
	1 = Synchror	nous mode					
	0 = Asynchro	onous mode					
bit 3	SENDB: Sen	d Break Chara	cter bit				
	Asynchronou	<u>s mode</u> :					
	1 = Send Sy	nc Break on ne	xt transmissio	on (cleared by l	hardware upon o	completion)	
	0 = Sync Bre	eak transmissio	n completed				
	Synchronous	mode:					
h # 0		David Data Cal	a at hit				
DIL 2	Asynchronou	Baud Rate Sel					
	1 = High spece	<u>s mode</u> .					
	0 = 1 ow spec	ed					
	Synchronous	mode:					
	Unused in thi	s mode					
bit 1	TRMT: Trans	mit Shift Regist	er Status bit				
	1 = TSR emp	oty					
	0 = TSR full	-					
bit 0	TX9D: Ninth I	bit of Transmit I	Data				
	Can be addre	ess/data bit or a	parity bit.				
Note 1: S	REN/CREN over	rides TXEN in	Sync mode.				

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 23-7: PWMxPHH: PWMx PHASE COUNT HIGH REGISTER

bit 7-0 **PH<15:8>**: PWM Phase High bits Upper eight bits of PWM phase count

REGISTER 23-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
PH<7:0>									
bit 7 bit									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PH<7:0>**: PWM Phase Low bits Lower eight bits of PWM phase count

Г

REGISTER 23-15: PWMxTMRH: PWMx TIMER HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMR	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR<15:8>: PWM Timer High bits Upper eight bits of PWM timer counter

REGISTER 23-16: PWMxTMRL: PWMx TIMER LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
TMR<7:0>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMR<7:0>: PWM Timer Low bits Lower eight bits of PWM timer counter ٦

FIGURE 24-2: TYPICAL CWG OPERATION WITH PWM1 (NO AUTO-SHUTDOWN)

24.5 Dead-Band Control

Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers (Register 24-4 and Register 24-5, respectively).

24.6 Rising Edge Dead Band

The rising edge dead-band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on.

The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

24.7 Falling Edge Dead Band

The falling edge dead band delays the turn-on of the CWGxB output from when the CWGxA output is turned off. The falling edge dead-band time starts when the falling edge of the input source goes true. When this happens, the CWGxA output is immediately turned off and the falling edge dead-band delay time starts. When the falling edge dead-band delay time is reached, the CWGxB output is turned on.

The CWGxDBF register sets the duration of the deadband interval on the falling edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 24-3 and Figure 24-4 for examples.

	.0-5.	ENHANCED MID-RAN	GE INSTRUCTION 3										
Mner	nonic,	Description		vcles	14-Bit Opcode				Status	Notos			
Oper	rands			ycles	MSb			LSb	Affected	Notes			
		BYTE-OI	RIENTED FILE REGISTER	R OPE	RATIO	NS							
ADDWF	f, d	Add W and f	1		00	0111	dfff	ffff	C, DC, Z	2			
ADDWFC	f, d	Add with Carry W and f	1		11	1101	dfff	ffff	C, DC, Z	2			
ANDWF	f, d	AND W with f	1		00	0101	dfff	ffff	Z	2			
ASRF	f, d	Arithmetic Right Shift	1		11	0111	dfff	ffff	C, Z	2			
LSLF	f, d	Logical Left Shift	1		11	0101	dfff	ffff	C, Z	2			
LSRF	f, d	Logical Right Shift	1		11	0110	dfff	ffff	C, Z	2			
CLRF	f	Clear f	1		00	0001	lfff	ffff	Z	2			
CLRW	_	Clear W	1		00	0001	0000	00xx	Z				
COMF	f, d	Complement f	1		00	1001	dfff	ffff	Z	2			
DECF	f, d	Decrement f	1		00	0011	dfff	ffff	Z	2			
INCF	f, d	Increment f	1		00	1010	dfff	ffff	Z	2			
IORWF	f, d	Inclusive OR W with f	1		00	0100	dfff	ffff	Z	2			
MOVF	f, d	Move f	1		00	1000	dfff	ffff	Z	2			
MOVWF	f	Move W to f	1		00	0000	1fff	ffff		2			
RLF	f, d	Rotate Left f through Carr	ry 1		00	1101	dfff	ffff	С	2			
RRF	f, d	Rotate Right f through Ca	arry 1		00	1100	dfff	ffff	С	2			
SUBWF	f, d	Subtract W from f	1		00	0010	dfff	ffff	C, DC, Z	2			
SUBWFB	f, d	Subtract with Borrow W fr	rom f 1		11	1011	dfff	ffff	C, DC, Z	2			
SWAPF	f, d	Swap nibbles in f	1		00	1110	dfff	ffff		2			
XORWF	f, d	Exclusive OR W with f	1		00	0110	dfff	ffff	Z	2			
		BY	TE ORIENTED SKIP OPE	RATIC	ONS								
DECEST	f. d	Decrement f. Skip if 0	1(2	2)	0.0	1011	dfff	ffff		1.2			
INCES7	f. d	Increment f. Skip if 0	1(2	2)	0.0	1111	dfff	ffff		1.2			
	, -	BIT OD			ATION	<u> </u>				,			
	£ h	Dit Clean f		UPER		3	1.555						
BCF	I, D f h	Dit Clear I Dit Sot f	1		01	0120	DIII	LLLL		2			
BSF	I, D	Bit Set I	1		01	ααιυ	IIIQ	IIII		2			
		B	IT-ORIENTED SKIP OPER	RATIO	NS								
BTFSC	f, b	Bit Test f, Skip if Clear	1 ((2)	01	10bb	bfff	ffff		1, 2			
BTFSS	f, b	Bit Test f, Skip if Set	1 ((2)	01	11bb	bfff	ffff		1, 2			
			LITERAL OPERATIO	NS									
ADDLW	k	Add literal and W	1		11	1110	kkkk	kkkk	C, DC, Z				
ANDLW	k	AND literal with W	1		11	1001	kkkk	kkkk	Z				
IORLW	k	Inclusive OR literal with V	V 1		11	1000	kkkk	kkkk	Z				
MOVLB	k	Move literal to BSR	1		00	0000	001k	kkkk					
MOVLP	k	Move literal to PCLATH	1		11	0001	1kkk	kkkk					
MOVLW	k	Move literal to W	1		11	0000	kkkk	kkkk					
SUBLW	k	Subtract W from literal	1		11	1100	kkkk	kkkk	C, DC, Z				
XORLW	k	Exclusive OR literal with	W 1		11	1010	kkkk	kkkk	Z				

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

TABLE 27-5: MEMORY PROGRAMMING SPECIFICATIONS

	•	•	,				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	—	_	10	mA	
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	_	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN		VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

PIC16(L)F1574/5/8/9

FIGURE 28-61: Comparator Input at 25°C, Normal Power Mode, (CxSP = 1).

FIGURE 28-62: Sleep Mode, Wake Period with HFINTOSC Source, LF Devices Only.

FIGURE 28-63: Low-Power Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 1, F Devices Only.

FIGURE 28-65: Temperature Indicator Initial Offset, High Range, Temp = 20°C, F Devices Only.

FIGURE 28-64: Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 0, F Devices Only.

FIGURE 28-66: Temperature Indicator Initial Offset, Low Range, Temp = 20°C, F Devices Only.

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	0.50 BSC				
Optional Center Pad Width	X2			2.80	
Optional Center Pad Length	Y2			2.80	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X20)	X1			0.30	
Contact Pad Length (X20)	Y1			0.80	
Contact Pad to Center Pad (X20)	G1	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2255A