Microchip Technology - PIC16F1575-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1575-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW ;	Add Index in W to
;	program counter to
;	select data
RETLW DATA0 ;	Index0 data
RETLW DATA1 ;	Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IND	EX
call constants	
; THE CONSTANT IS I	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constant	S	
DW	DATA0	;First constant
DW	DATA1	;Second constant
DW	DATA2	
DW	DATA3	
my_funct	ion	
; LOT	S OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constants	3
MOVWF	FSR1L	
MOVLW	HIGH constant	s;MSb is set
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	;carry from ADDLW?
INCF	FSR1H,f	;yes
MOVIW	0[FSR1]	
;THE PRO	GRAM MEMORY IS	IN W

IADEL 3	-13. SI L										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27											
D8Ch	_	Unimpleme	nted							—	_
D8Dh	—	Unimpleme	nimplemented							_	_
D8Eh	PWMEN	_	_	_	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	0000	0000
D8Fh	PWMLD	_	_	_	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	0000	0000
D90h	PWMOUT	_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM10UT_A	0000	0000
D91h	PWM1PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
D92h	PWM1PHH					PH<15:8>				XXXX XXXX	uuuu uuuu
D93h	PWM1DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
D94h	PWM1DCH					DC<15:8>				XXXX XXXX	uuuu uuuu
D95h	PWM1PRL					PR<7:0>				xxxx xxxx	սսսս սսսւ
D96h	PWM1PRH					PR<15:8>				xxxx xxxx	սսսս սսսւ
D97h	PWM10FL		OF<7:0>							xxxx xxxx	սսսս սսսւ
D98h	PWM10FH					OF<15:8>				xxxx xxxx	սսսս սսսւ
D99h	PWM1TMRL		 TMR<7:0>							xxxx xxxx	uuuu uuuu
D9Ah	PWM1TMRH					TMR<15:8>				xxxx xxxx	սսսս սսսւ
D9Bh	PWM1CON	EN	_	OUT	POL	MODE	E<1:0>	_	_	0-00 00	0-00 00
D9Ch	PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	000	000
D9Dh	PWM1INTF	_	_	_	—	OFIF	PHIF	DCIF	PRIF	000	000
D9Eh	PWM1CLKCON	_		PS<2:0>	•	—	_	CS<	<1:0>	-000 -000	-00000
D9Fh	PWM1LDCON	LDA	LDT	_	_	—	_	LDS	<1:0>	00000	0000
DA0h	PWM10FC0N	_	OFM	<1:0>	OFO	—	_	OFS	<1:0>	-000 -000	-00000
DA1h	PWM2PHL				•	PH<7:0>				xxxx xxxx	uuuu uuuu
DA2h	PWM2PHH		 PH<15:8>							xxxx xxxx	uuuu uuuu
DA3h	PWM2DCL		 DC<7:0>							xxxx xxxx	uuuu uuuu
DA4h	PWM2DCH		 DC<15:8>							xxxx xxxx	սսսս սսսս
DA5h	PWM2PRL		 PR<7:0>							xxxx xxxx	uuuu uuuu
DA6h	PWM2PRH					PR<15:8>				xxxx xxxx	սսսս սսսս
DA7h	PWM2OFL					OF<7:0>				xxxx xxxx	uuuu uuuu
DA8h	PWM2OFH					OF<15:8>				xxxx xxxx	uuuu uuuu
DA9h	PWM2TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
DAAh	PWM2TMRH					TMR<15:8>				xxxx xxxx	111111 11111

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

3.5 Stack

FIGURE 3-5:

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-5 through 3-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

ACCESSING THE STACK EXAMPLE 1

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

	Rev. 10-00043A 7/502013
TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0E	N
0x0D	
0x0C	
0x0B	Initial Stack Configuration:
0x0A	
0x09	After Reset, the stack is empty. The
0x08	Pointer is pointing at 0x1F. If the Stack
0x07	Overflow/Underflow Reset is enabled, the
0x06	Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL register will
0x04	0x0F.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F (STVREN = 1)
``	\mathbb{N}

© 2016 Microchip Technology Inc.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOREN	BORV ⁽³⁾	STVREN	PLLEN
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1
—	—	_	—	_	PPS1WAY	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	P = Program	mable bit	U = Unimplem	nented bit, read	l as '1'	
'0' = Bit is	cleared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13	LVP: Low-Vo	oltage Programi	ming Enable bit	₍ (1)			
	1 = ON -	- Low-voltage	programming	enabled. MC	LR/VPP pin f	unction is MC	CLR. MCLRE
		Configuration	bit is ignored.				
	0 = OFF -	- High Voltage	on MCLR/VPP	must be used fo	or programming	J	
bit 12	DEBUG: De	bugger Mode bi	(²⁾				
	1 = OFF -	- In-Circuit Debu	igger disabled;	ICSPCLK and	ICSPDAT are (general purpose	e I/O pins.
L:1 4 4			ugger enabled,		ICSPDAT ale C		; debugger.
DICTI	1 - OFF	LOW-POWER Bro	wn-out Reset E	is disabled			
	0 = ON -	- Low-power Bro	own-out Reset	is enabled			
bit 10	BORV: Brow	n-out Reset Vo	Itage Selection	bit ⁽³⁾			
	1 = LOW -	- Brown-out Res	set voltage (VB	OR), low trip poi	nt selected		
0 = HIGH – Brown-out Reset voltage (VBOR), high trip point selected							
bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit							
	1 = ON -	 Stack Overflow 	v or Underflow	will cause a Re	set		
	0 = OFF -	 Stack Overflow 	v or Underflow	will not cause a	Reset		
bit 8	PLLEN: PLL	Enable bit					
	1 = ON -	- 4xPLL enabled	3				
h# 7 0	0 = OFF -		u 1,				
	Unimpleme						
bit 2	PPS1WAY: H		ne-Way Set Er	hable bit			4
	$\perp = ON$	PPSLOCK	off can only be	set once atter a	in uniocking sec	Juence is execu-	tea; once
	0 = OFF	The PPSLOCK	bit can be set a	and cleared as r	needed (provide	d an unlocking s	sequence is
	-	executed)					
Note 4:	This hit serves to		to (0) where ===		o io optored de		
NOTE 1:		in Configuration	U U when pro	gramming mod		i LVP.	
2:	THE DEBUG bit	in Configuration	i vvoras is man	ageo automatic	any by device of	Jevelopment to	ois incluaing

REGISTER 4-2: CONFIGURATION WORD 2

- debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
- **3:** See VBOR parameter for specific trip point voltages.

4.7 Register Definitions: Device ID

R R R R R R DEV<13:8> bit 13 bit 8 R R R R R R R R DEV<7:0> bit 7 bit 0

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

Legend:

R = Readable bit	
R = Readable bit	

'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **DEV<13:0>:** Device ID bits

Refer to Table 4-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.

Note 1: This location cannot be written.

REGISTER 4-4: REVISIONID: REVISION ID REGISTER⁽¹⁾

	R	R	R	R	R	R
			REV<1	3:8>		
	bit 13					bit 8
-	-	-	D	-	-	

R	R	R	R	R	R	R	R
			REV<	7:0>			
bit 7							bit 0

Legend:			
R = Readable bit			
'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **REV<13:0>:** Revision ID bits These bits are used to identify the device revision.

Note 1: This location cannot be written.

TABLE 4-1: DEVICE ID VALUES

DEVICE	Device ID	Revision ID
PIC16F1574	3000h	2xxxh
PIC16F1575	3001h	2xxxh
PIC16F1578	3002h	2xxxh
PIC16F1579	3003h	2xxxh
PIC16LF1574	3004h	2xxxh
PIC16LF1575	3005h	2xxxh
PIC16LF1578	3006h	2xxxh
PIC16LF1579	3007h	2xxxh

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

8.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a **SLEEP** instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- 8. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- CWG module using HFINTOSC

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include the FVR module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information on this module.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.12 "Determining the Cause of a Reset**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

REGISTER 11-20:	ANSELC: PORTC ANALOG SELECT REGISTER
-----------------	--------------------------------------

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0
bit 7				•		•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	bit 7-6 ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ^(1, 2) 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ Digital input buffer disabled						
bit 5-4	bit 5-4 Unimplemented: Read as '0'						
bit 3-0 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively ⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.							
Note 1: V	Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to						

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xx	xPPS: PERIPHERAL xxx	INPUT SELECTION
-------------------	-----------------------------	-----------------

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
	_	_			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periphe	eral	
bit 7-5	Unimplement	ted: Read as 'd)'				
bit 4-3	xxxPPS<4:3> 11 = Reserve 10 = Peripher 01 = Peripher 00 = Peripher	 Peripheral xx d. Do not use. al input is POR al input is POR al input is POR 	x Input PORT TC TB ⁽²⁾ TA	Γ Selection bits			
bit 2-0 xxxPPS<2:0>: Peripheral xxx Input Bit Selection I 111 = Peripheral input is from PORTx Bit 7 (Rx7) 110 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5) 100 = Peripheral input is from PORTx Bit 4 (Rx4) 011 = Peripheral input is from PORTx Bit 3 (Rx3) 010 = Peripheral input is from PORTx Bit 2 (Rx2) 001 = Peripheral input is from PORTx Bit 1 (Rx1) 000 = Peripheral input is from PORTx Bit 0 (Rx0)				election bits ⁽¹⁾ 7 (Rx7) 6 (Rx6) 5 (Rx5) 4 (Rx4) 3 (Rx3) 2 (Rx2) 1 (Rx1) 0 (Rx0)			

Note 1: See Table 12-1 for xxxPPS register list and Reset values.2: PIC16(L)F1578/9 only.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			RxyPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 12-2 for the selection codes

'0' = Bit is cleared

1' = Bit is set

REGISTER 13-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits(1)

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

Note 1: IOCCP<7:6> available on PIC16(L)F1578/9 devices only.

REGISTER 13-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits(1)

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

Note 1: IOCCN<7:6> available on PIC16(L)F1578/9 devices only.

REGISTER 13-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCCF ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

Г

IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits(1)

1 = An enabled change was detected on the associated pin.

- Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change.

Note 1: IOCCF<7:6> available on PIC16(L)F1578/9 devices only.

20.8 Register Definitions: Timer1 Control

REGISTER 20-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	U-0	R/W-0/u
TMR1C	TMR1CS<1:0> T1CKPS<1:0> — T1SYNC —		TMR10N				
bit 7		•					
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	TMR1CS<1:0	>: Timer1 Cloc	k Source Sele	ect bits			
	11 = Timer1 c	lock source is	LFINTOSC		,		
	10 = Iimer1 c	Clock source is	11CKI pin (on	the rising edge	e)		
	00 = Timer 1 c	lock source is i	instruction clock	ck (Fosc/4)			
bit 5-4	T1CKPS<1:0	>: Timer1 Inpu	t Clock Presca	le Select bits			
	11 = 1:8 Pres	cale value					
	10 = 1:4 Pres	cale value					
	01 = 1:2 Pres	cale value					
	00 = 1:1 Pres		- 1				
DIT 3	Unimplemen	ted: Read as					
bit 2	T1SYNC: Im	ier1 Synchroni	zation Control	bit			
	1 = Do not sy 0 = Synchror	nchronize asy	nchronous cloc ous clock input	ck input t with system c	lock (Fosc)		
hit 1		ted: Read as '	n'	t with system c	100K (1 030)		
bit 0		nor1 On hit	5				
DILU		Timor1					
	1 = Enables 0 = Stops Tin	ner1 and clears	s Timer1 gate f	flip-flop			
			guto i				

22.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 22-9 for the timing of the Break character sequence.

22.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

22.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 22.4.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 22-9: SEND BREAK CHARACTER SEQUENCE

22.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

22.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

22.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

22.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

22.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 22.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

FIGURE 23-12: OFFSET MATCH ON INCREMENTING TIMER TIMING DIAGRAM

PIC16(L)F1574/5/8/9

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	—	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read a	is '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR	Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7-4	Unimplement	ed: Read as '0'					
bit 3	OFIE: Offset I	nterrupt Enable	bit				
	1 = Interrupt (CPU on Offset N	latch				
	0 = Do not interview of the second	errupt CPU on C	Offset Match				
bit 2	PHIE: Phase	Interrupt Enable	e bit				
	1 = Interrupt 0	PU on Phase I	Viatch Phase Match				
hit 1							
DILI	1 = Interrupt (CPU on Duty Cy	iable bit				
	0 = Do not integration of the second sec	errupt CPU on I	Duty Cycle Matc	h			
bit 0	PRIE: Period	Interrupt Enable	e bit				
	1 = Interrupt C	CPU on Period I	Match				
	0 = Do not inte	errupt CPU on F	Period Match				

REGISTER 23-2: PWMxINTE: PWM INTERRUPT ENABLE REGISTER

REGISTER 23-3: PWMxINTF: PWM INTERRUPT REQUEST REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	_	—	OFIF	PHIF	DCIF	PRIF
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardwa	re	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	OFIF: Offset Interrupt Flag bit ⁽¹⁾
	 1 = Offset Match Event occurred 0 = Offset Match Event did not occur
bit 2	PHIF: Phase Interrupt Flag bit ⁽¹⁾
	1 = Phase Match Event occurred0 = Phase Match Event did not occur
bit 1	DCIF: Duty Cycle Interrupt Flag bit ⁽¹⁾
	1 = Duty Cycle Match Event occurred
	0 = Duty Cycle Match Event did not occur
bit 0	PRIF: Period Interrupt Flag bit ⁽¹⁾
	1 = Period Match Event occurred
	0 = Period Match Event did not occur
Note 1	Bit is forced clear by bardware while module is disabled (EN = 0

Bit is forced clear by hardware while module is disabled (EN = 0).

REGISTER 23-13: PWMxOFH: PWMx OFFSET COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			OF<	15:8>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimpleme			nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkn	own	n -n/n = Value at POR and BOR/Value at all ot			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **OF<15:8>**: PWM Offset High bits Upper eight bits of PWM offset count

REGISTER 23-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER

R/W-x/u											
	OF<7:0>										
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **OF<7:0>:** PWM Offset Low bits Lower eight bits of PWM offset count

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRC	F<3:0>		—	SCS	<1:0>	69
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	—	—	_	89
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	—	—	92
PWMEN	_	_	_	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	243
PWMLD	_	_	—	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	243
PWMOUT	_	_	—	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	243
PWM1PHL			•	P	H<7:0>	•	•	•	238
PWM1PHH				PI	H<15:8>				238
PWM1DCL				D	C<7:0>				239
PWM1DCH				D	C<15:8>				239
PWM1PRL				P	R<7:0>				240
PWM1PRH				PI	R<15:8>				240
PWM10FL				C)F<7:0>				241
PWM10FH				0	F<15:8>				241
PWM1TMRL				TN	/IR<7:0>				242
PWM1TMRH				TM	IR<15:8>				242
PWM1CON	EN	_	OUT	POL	MODE	=<1:0>	—	—	233
PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	234
PWM1INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	234
PWM1CLKCON	_		PS<2:0>		_	_	CS<	:1:0>	235
PWM1LDCON	LDA	LDT	_	_	_	_	LDS	<1:0>	236
PWM10FCON	_	OFM	<1:0>	OFO	_	_	OFS	237	
PWM2PHL				P	H<7:0>				238
PWM2PHH				PI	H<15:8>				238
PWM2DCL				D	C<7:0>				239
PWM2DCH				D	C<15:8>				239
PWM2PRL				P	'R<7:0>				240
PWM2PRH				PI	R<15:8>				240
PWM2OFL				C)F<7:0>				241
PWM2OFH				0	F<15:8>				241
PWM2TMRL				TN	/IR<7:0>				242
PWM2TMRH				TN	IR<15:8>				242
PWM2CON	EN	_	OUT	POL	MODE	=<1:0>		_	233
PWM2INTE	_		_	_	OFIE	PHIE	DCIE	PRIE	234
PWM2INTF	_		_	_	OFIF	PHIF	DCIF	PRIF	234
PWM2CLKCON	_		PS<2:0>		_		CS<	:1:0>	235
PWM2LDCON	LDA	LDT	_	_			LDS	<1:0>	236
PWM2OFCON	_	OFM	<1:0>	OFO			OFS	<1:0>	237
PWM3PHL				P	H<7:0>				238
PWM3PHH				P	H<15:8>				238
PWM3DCL				D	C<7:0>				239
PWM3DCH				D	C<15:8>				239
PWM3PRL				P	R<7:0>				240
PWM3PRH				P	R<15:8>				240
PWM3OFL				C)F<7:0>				241
PWM30FH				0	F<15:8>				241
PWM3TMRI				TN	/IR<7:0>				242
PWM3TMRH				TM	IR<15:8>				242
PWM3CON	EN		OUT	POI	MODE	<1:0>			233
PWM3INTF		_	_	_	OFIF	PHIF	DCIF	PRIF	234
PWM3INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	234
							201		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

PIC16(L)F1574/5/8/9

REGISTER 24-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

	DEAD	DAND 000						
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
	_			CWG x D	BR<5:0>			
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		q = Value depends on condition				
bit 7-6	Unimplemer	mented: Read as '0'						
bit 5-0	CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising Counts							
	11 1111 = 6	3-64 counts of	dead band					
	11 1110 = 6	2-63 counts of	dead band					
	•							
	•							
	•							
	$00 \ 0010 = 2$	2-3 counts of de	ad band					

REGISTER 24-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_	CWGxDBF<5:0>					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5-0	CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts
	11 1111 = 63-64 counts of dead band 11 1110 = 62-63 counts of dead band
	•

- •
- •
- 00 0010 = 2-3 counts of dead band

00 0001 = 1-2 counts of dead band 00 0000 = 0 counts of dead band

- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15