

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1575-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-7:PIC16(L)F1574/8 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
40Bh	(Table 3-2)	48Bh	(Table 3-2)	50Bh	(Table 3-2)	58Bh	(Table 3-2)	60Bh	(Table 3-2)	68Bh	(Table 3-2)	70Bh	(Table 3-2)	78Bh	(Table 3-2)
40Bh 40Ch		48Ch		50Bh		58Ch		60Ch	_	68Ch	_	70Bh		78Ch	_
40Ch 40Dh		48Ch		50Ch		58Dh		60Ch		68Dh		70Ch		78Dh	
40Dh 40Eh	_	48Eh		50Eh		58Eh		60Eh		68Eh	_	70Dh		78Eh	_
40Eh	_	48Fh	_	50En	_	58Fh	_	60Eh		68Fh	_	70En		78Fh	_
401 h	_	490h	_	510h	_	590h	_	610h		690h	_	710h		790h	_
411h	_	491h	_	511h	_	591h	_	611h		691h	CWG1DBR	711h		791h	_
412h	_	492h	_	512h	_	592h	_	612h		692h	CWG1DBF	712h	_	792h	
413h	_	493h	_	513h	_	593h	_	613h	_	693h	CWG1CON0	713h	_	793h	_
414h	_	494h	_	514h	_	594h	_	614h	_	694h	CWG1CON1	714h	_	794h	
415h	_	495h	_	515h	_	595h	_	615h	_	695h	CWG1CON2	715h	_	795h	_
416h	_	496h	_	516h	_	596h	_	616h	_	696h	_	716h	_	796h	
417h	_	497h	—	517h	—	597h	—	617h	_	697h	_	717h	—	797h	_
418h	_	498h	_	518h	_	598h	_	618h	_	698h	_	718h	_	798h	
419h	_	499h	_	519h	_	599h	_	619h	_	699h	_	719h	_	799h	_
41Ah	_	49Ah	_	51Ah	_	59Ah	_	61Ah	—	69Ah	_	71Ah	—	79Ah	
41Bh	—	49Bh	—	51Bh	—	59Bh	—	61Bh	—	69Bh	—	71Bh	—	79Bh	
41Ch	—	49Ch	—	51Ch	—	59Ch	—	61Ch		69Ch	—	71Ch	_	79Ch	_
41Dh	—	49Dh	—	51Dh	—	59Dh	—	61Dh	_	69Dh	_	71Dh		79Dh	_
41Eh	—	49Eh	_	51Eh	—	59Eh	_	61Eh	—	69Eh	—	71Eh	_	79Eh	_
41Fh	—	49Fh	_	51Fh	_	59Fh	_	61Fh		69Fh	—	71Fh		79Fh	_
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-10: PIC16(L)F1574/5/8/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh	(10010 0 2)	C8Bh	(10010 0 2)	D0Bh	(10510 0 2)	D8Bh	(10010 0 2)	E0Bh	(10010 0 2)	E8Bh	(10010 0 2)	F0Bh	(10010 0 2)	F8Bh	(10010 0 2)
C0Ch	_	C8Ch	_	D0Ch	—	D8Ch		E0Ch		E8Ch		F0Ch	_	F8Ch	
C0Dh		C8Dh	_	D0Dh	—							F0Dh	_		
C0Eh		C8Eh		D0Eh	—							F0Eh	—		
C0Fh	—	C8Fh	_	D0Fh	—							F0Fh	_		
C10h	—	C90h	_	D10h	—							F10h	_		
C11h	—	C91h	_	D11h	_							F11h	_		
C12h	—	C92h	_	D12h	_							F12h	_		
C13h		C93h		D13h	—							F13h	—		
C14h	—	C94h		D14h	—							F14h	—		
C15h	—	C95h		D15h	—							F15h	—		
C16h	—	C96h	_	D16h	_							F16h	_		
C17h	—	C97h	_	D17h	_							F17h	_		
C18h	_	C98h	—	D18h	—		See Table 3-11		See Table 3-12		See Table 3-12	F18h			See Table 3-13
C19h		C99h	_	D19h	_							F19h	_		
C1Ah		C9Ah	_	D1Ah	_							F1Ah	_		
C1Bh		C9Bh	_	D1Bh	_							F1Bh	_		
C1Ch		C9Ch	_	D1Ch	—							F1Ch	—		
C1Dh		C9Dh	—	D1Dh	—							F1Dh	—		
C1Eh		C9Eh	—	D1Eh	—							F1Eh	_		
C1Fh	_	C9Fh	_	D1Fh	_							F1Fh			
C20h		CA0h		D20h								F20h			
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'								Unimplemented Read as '0'		
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh														
	-	CFFh	7011-7111	D7Fh	/011 - /111	DFFh	7011-7111	E7Fh	701-711	EFFh	-	F7Fh	7011-7111	FFFh	/011-/111
CFFh		OFFN		חדוט		DEEU								LLLU	

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	PORTB ⁽¹⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	xxxx
00Eh	PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	xxxx xxxx
00Fh	—	Unimplemen	implemented								_
010h	—	Unimplemen	nted		_	_					
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	000000	000000
012h	PIR2	_	C2IF	C1IF	_	—	—	_	—	-00	-00
013h	PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	_	—	0000	0000
014h	—									—	—
015h	TMR0	Holding Reg	ister for the 8	3-bit Timer0 (Count					xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	ister for the l	_east Signific	ant Byte of the	16-bit TMR1 Co	ount			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Reg	ister for the I	Most Significa	ant Byte of the	16-bit TMR1 Co	unt			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	—	T1SYNC	_	TMR10N	0000 -0-0	uuuu -u-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Mod	ule Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Period Register								1111 1111	1111 1111
01Ch	T2CON	- T2OUTPS<3:0> TMR2ON T2CKPS<1:0>								-000 0000	-000 0000
01Dh	_	Unimplemented								_	_
01Eh	—	Unimplemer	Unimplemented								
01Fh	—	Unimplemer	nted							_	_

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA		_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	_	—	—	_	1111	1111
20Eh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh to 21Fh	_	Unimplemer	nimplemented								—
Bank 5											
28Ch	ODCONA		_	ODA5	ODA4	_	ODA2	ODA1	ODA0	00 -000	00 -000
28Dh	ODCONB ⁽¹⁾	ODB7	ODB6	ODB5	ODB4	_	—	—	_	0000	0000
28Eh	ODCONC	ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000 0000	0000 0000
28Fh to 29Fh	_	Unimplemer	nted							_	_
Bank 6											
30Ch	SLRCONA		_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	11 -111	11 -111
30Dh	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	_	—	—	_	1111	1111
30Eh	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
30Fh to 31Fh	_	Unimplemer	nted							_	—

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Note 1: PIC16(L)F1578/9 only.

2: PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

U-0	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q		
—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Condition	al				
bit 7	•	ted: Read as '	0'						
bit 6	PLLR 4x PLL	•							
	1 = 4x PLLi 0 = 4x PLLi								
bit 5		 4x PLL is not ready STS: Oscillator Start-up Timer Status bit 							
		•		FOSC<1.0>1	oits of the Confi	guration Word	s		
		from an intern				guiation word	5		
bit 4	HFIOFR: Hig	h-Frequency Ir	iternal Oscillate	or Ready bit					
	1 = HFINTO								
	0 = HFINTO	SC is not ready	1						
bit 3	•	h-Frequency In		or Locked bit					
		SC is at least 2 SC is not 2% a							
bit 2				illator Roady b	i+				
		dium-Frequend	y memai Osc	illator Ready D	it.				
		1 = MFINTOSC is ready 0 = MFINTOSC is not ready							
bit 1	LFIOFR: Low	LFIOFR: Low-Frequency Internal Oscillator Ready bit							
	1 = LFINTOS	SC is ready		-					
	0 = LFINTOS	SC is not ready							
bit 0	HFIOFS: Hig	h-Frequency Ir	ternal Oscillato	or Stable bit					
	1 = HFINTOSC is at least 0.5% accurate								
	0 = HFINTO	SC is not 0.5%	accurate						

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

6.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- · BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0	37	Awake	Active	Waits for BOR ready (BORRDY = 1)
10	10 X		Disabled	
0.1	1	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
01	0	х	Disabled	Begins immediately (BORRDY = x)
00	Х	Х	Disabled	

TABLE 6-1:BOR OPERATING MODES

Note 1: In these specific cases, "release of POR" and "wake-up from Sleep," there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
—	_	LATA5	LATA4	—	LATA2	LATA1	LATA0		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimpleme	nted: Read as '	כ'						

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾

- bit 3 Unimplemented: Read as '0'
- bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾
- **Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—		ANSA4	_	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to

allow external control of the voltage on the pin.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value at	POR and BOR/V	alue at all other I	Resets
'1' = Bit is set		'0' = Bit is clear	ed				

REGISTER 11-22: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

bit 7-0

ODC<7:0>: PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
bit 7	•						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits⁽¹⁾ For RC<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

Note 1: SLRC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits⁽¹⁾

For RC<7:0> pins, respectively

1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

Note 1: INLVLC<7:6> are available on PIC16(L)F1578/9 only.

12.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible and are the only pins on the device with this compatibility.

12.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 12-1.

EXAMPLE 12-1: PPS LOCK/UNLOCK SEQUENCE

the second destruction with a
; suspend interrupts
bcf INTCON,GIE
; BANKSEL PPSLOCK ; set bank
; required sequence, next 5 instructions
movlw 0x55
movwf PPSLOCK
movlw 0xAA
movwf PPSLOCK
; Set PPSLOCKED bit to disable writes or
; Clear PPSLOCKED bit to enable writes
bsf PPSLOCK, PPSLOCKED
; restore interrupts
bsf INTCON,GIE

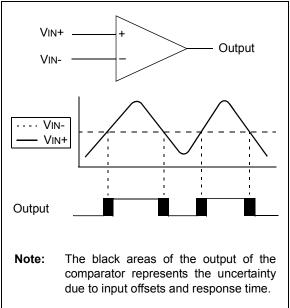
12.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

12.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

12.7 Effects of a Reset


A device Power-On-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 12-1.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
PPSLOCK		_	_	_	—	_	—	PPSLOCKED	138	
INTPPS		_	_		INTPPS<4:0>					
TOCKIPPS		_	_		T0CKIPPS<4:0>					
T1CKIPPS		_	_			T1CKIPPS<	4:0>		137	
T1GPPS		_	_			T1GPPS<4	:0>		137	
CWG1INPPS		_	_		C	WG1INPPS	<4:0>		137	
RXPPS		_	_			RXPPS<4	0>		137	
CKPPS		_	_			CKPPS<4	0>		137	
ADCACTPPS		_	_		А	DCACTPPS	<4:0>		137	
RA0PPS		_	_	_		RAOF	PPS<3:0>		137	
RA1PPS		—	_	—		RA1F	PPS<3:0>		137	
RA2PPS		_	_	_		RA2F	PPS<3:0>		137	
RA4PPS		_	_	_		RA4F	PPS<3:0>		137	
RA5PPS		_	_	_		RA5F	PPS<3:0>		137	
RB4PPS ⁽¹⁾		_	_	_		RB4F	PPS<3:0>		137	
RB5PPS ⁽¹⁾		_	_	_		RB5F	PPS<3:0>		137	
RB6PPS ⁽¹⁾		_	_	_		RB6F	PPS<3:0>		137	
RB7PPS ⁽¹⁾		_	_	_		RB7F	PPS<3:0>		137	
RC0PPS		_	_	_		RCOF	PPS<3:0>		137	
RC1PPS		_	_	_		RC1F	PPS<3:0>		137	
RC2PPS		_	_	_		RC2F	PPS<3:0>		137	
RC3PPS		—	_	—	— RC3PPS<3:0>					
RC4PPS	_	_	—	_		RC4	PPS<3:0>		137	
RC5PPS	_	—	—	—	RC5PPS<3:0>					
RC6PPS ⁽¹⁾		—	—	—		RC6	PPS<3:0>		137	
RC7PPS ⁽¹⁾	—	_	—	_		RC7F	PPS<3:0>		137	

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Note 1: PIC16(L)F1578/9 only.

FIGURE 18-2: SINGLE COMPARATOR

18.2 Comparator Control

The comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- · Output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC1_output
- FVR_buffer2
- Vss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

Complementary Waveform Generator (CWG)

Note: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

23.2 PWM Modes

PWM Modes are selected with MODE<1:0> bits of the PWMxCON register (Register 23-1).

In all PWM modes an offset match event can also be used to synchronize the PWMxTMR in three offset modes. See **Section 23.3 "Offset Modes"** for more information.

23.2.1 STANDARD MODE

The Standard mode (MODE = 00) selects a single phase PWM output. The PWM output in this mode is determined by when the period, duty cycle, and phase counts match the PWMxTMR value. The start of the duty cycle occurs on the phase match and the end of the duty cycle occurs on the duty cycle match. The period match resets the timer. The offset match can also be used to synchronize the PWMxTMR in the offset modes. See **Section 23.3 "Offset Modes"** for more information.

Equation 23-1 is used to calculate the PWM period in Standard mode.

Equation 23-2 is used to calculate the PWM duty-cycle ratio in Standard mode.

EQUATION 23-1: PWM PERIOD IN STANDARD MODE

$$Period = \frac{(PWMxPR + 1) \cdot Prescale}{PWMxCLK}$$

EQUATION 23-2: PWM DUTY CYCLE IN STANDARD MODE

$$Duty Cycle = \frac{(PWMxDC - PWMxPH)}{PWMxPR + 1}$$

A detailed timing diagram for Standard mode is shown in Figure 23-4.

23.2.2 SET ON MATCH MODE

The Set On Match mode (MODE = 01) generates an active output when the phase count matches the PWMxTMR value. The output stays active until the OUT bit of the PWMxCON register is cleared or the PWM module is disabled. The duty cycle count has no effect in this mode. The period count only determines the maximum PWMxTMR value above which no phase matches can occur.

The PWMxOUT bit can be used to set or clear the output of the PWM in this mode. Writes to this bit will take place on the next rising edge of the PWM_clock after the bit is written.

A detailed timing diagram for Set On Match is shown in Figure 23-5.

23.2.3 TOGGLE ON MATCH MODE

The Toggle On Match mode (MODE = 10) generates a 50% duty cycle PWM with a period twice as long as that computed for the standard PWM mode. Duty cycle count has no effect in this mode. The phase count determines how many PWMxTMR periods after a period event the output will toggle.

Writes to the OUT bit of the PWMxCON register will have no effect in this mode.

A detailed timing diagram for Toggle On Match is shown in Figure 23-6.

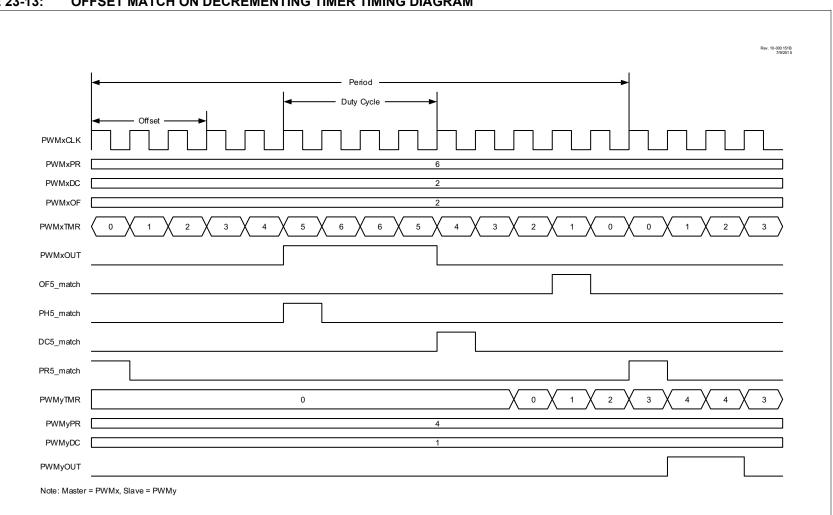
23.2.4 CENTER-ALIGNED MODE

The Center-Aligned mode (MODE = 11) generates a PWM waveform that is centered in the period. In this mode the period is two times the PWMxPR count. The PWMxTMR counts up to the period value then counts back down to 0. The duty cycle count determines both the start and end of the active PWM output. The start of the duty cycle occurs at the match event when PWMxTMR is incrementing and the duty cycle ends at the match event when PWMxTMR is decrementing. The incrementing match value is the period count minus the duty cycle count. The decrementing match value is the incrementing match value plus 1.

Equation 23-3 is used to calculate the PWM period in Center-Aligned mode.

EQUATION 23-3: PWM PERIOD IN CENTER-ALIGNED MODE

$$Period = \frac{(PWMxPR + 1) \cdot Prescale \cdot 2}{PWMxCLK}$$


Equation 23-4 is used to calculate the PWM duty cycle ratio in Center-Aligned mode

EQUATION 23-4: PWM DUTY CYCLE IN CENTER-ALIGNED MODE

$$Duty Cycle = \frac{PWMxDC \cdot 2}{(PWMxPR + 1) \cdot 2}$$

Writes to PWMxOUT will have no effect in this mode.

A detailed timing diagram for Center-Aligned mode is shown in Figure 23-7.

FIGURE 23-13:

PIC16(L)F1574/5/8/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PWM3CLKCON	_		PS<2:0> — — CS<1:0>						
PWM3LDCON	LDA	LDT	—	—	_	_	LDS	<1:0>	236
PWM30FC0N	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	237
PWM4PHL		•		P	H<7:0>		•		238
PWM4PHH				PI	H<15:8>				238
PWM4DCL				D	C<7:0>				239
PWM4DCH				D	C<15:8>				239
PWM4PRL				P	'R<7:0>				240
PWM4PRH				PI	R<15:8>				240
PWM40FL				C)F<7:0>				241
PWM40FH				0	F<15:8>				241
PWM4TMRL				TN	/IR<7:0>				242
PWM4TMRH				TN	IR<15:8>				242
PWM4CON	EN	_	OUT	POL	MODE	E<1:0>		—	233
PWM4INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	234
PWM4INTF		—	_	—	OFIF	PHIF	DCIF	PRIF	234
PWM4CLKCON	_		PS<2:0>	•	_	_	CS<	:1:0>	235
PWM4LDCON	LDA	LDT	—	—	_	_	LDS	<1:0>	236
PWM40FCON	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	237

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM (CONTINUED)

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

TABLE 23-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	-	—	-	—	CLKOUTEN BOREN		N<1:0>	—	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		-	FOSC	C<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

PIC16(L)F1574/5/8/9

REGISTER 24-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

	DEP	D-BAND COUL	NI REGIST	=R						
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
_	_			CWGxD	BR<5:0>					
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value depends on condition						
bit 7-6	Unimplem	ented: Read as '	0'							
bit 5-0	11 1111 =	R<5:0>: Complem = 63-64 counts of = 62-63 counts of	dead band	orm Generator	(CWGx) Rising	Counts				
	•									
	•									
	•									
	00 0010=	= 2-3 counts of de	ad band							

REGISTER 24-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			CWGxD	BF<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5-0	CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts
	11 1111 = 63-64 counts of dead band 11 1110 = 62-63 counts of dead band
	•

- •
- •
- 00 0010 = 2-3 counts of dead band

00 0001 = 1-2 counts of dead band 00 0000 = 0 counts of dead band

- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

25.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP[™] refer to the "*PIC16(L)F157x Memory Programming Specification*" (DS40001766).

25.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

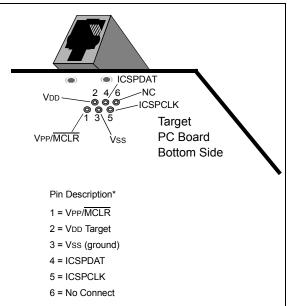
25.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5** "**MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

25.3 Common Programming Interfaces

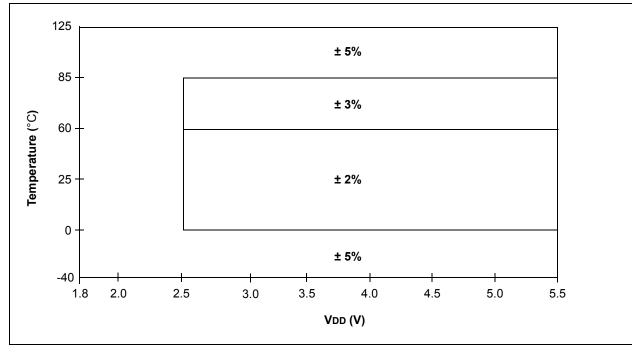
Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 25-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 25-2.

*

TABLE 27-8: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym. Characteristic		Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%	—	16.0	—	MHz	VDD = 3.0V, TA = 25°C, (Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz		
OS10*	Twarm	HFINTOSC Wake-up from Sleep Start-up Time	—	—	5	15	μS		
		LFINTOSC Wake-up from Sleep Start-up Time	—	_	0.5	—	ms		


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 27-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature.

FIGURE 27-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	—	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%	

* These parameters are characterized but not tested.

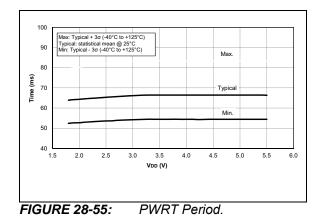
† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

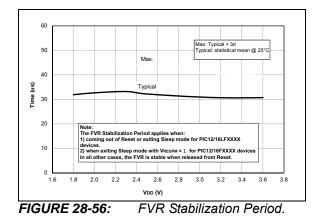
TABLE 27-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

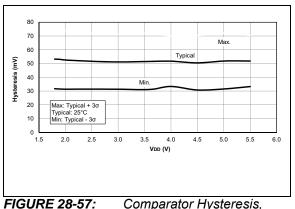
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—	_	10	bit	
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	VREF = 3.0V
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V
AD06	VREF	Reference Voltage	1.8	_	Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	—	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.

These parameters are characterized but not tested.

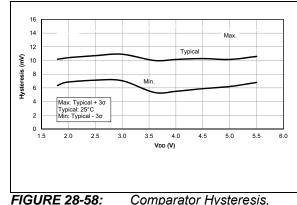
Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.


Note 1: Total Absolute Error includes integral, differential, offset and gain errors.


2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.


3: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.


PIC16(L)F1574/5/8/9



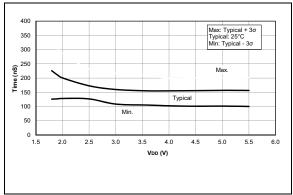

FIGURE 28-57: Comparator Hysteresis, Normal Power Mode (CxSP = 1, CxHYS = 1).

FIGURE 28-58: Comparator Hysteresis, Low-Power Mode (CxSP = 0, CxHYS = 1).

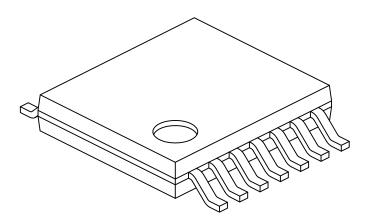

FIGURE 28-59: Comparator Response Time, Normal Power Mode, (CxSP = 1).

FIGURE 28-60: Comparator Response Time Over Temperature, Normal Power Mode, (CxSP = 1).

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N	14				
Pitch	е	0.65 BSC				
Overall Height	А	I	1.20			
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E	6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	(L1)	1.00 REF				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.19	-	0.30		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2