

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1575t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Packages	PDIP	SOIC	TSSOP	SSOP	UQFN
PIC16(L)F1574	•	•	•		•
PIC16(L)F1575	•	•	•		•
PIC16(L)F1578	•	•		•	•
PIC16(L)F1579	•	•		•	•

Note: Pin details are subject to change.

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See section **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 26.0** "Instruction Set Summary" for more details.

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 26.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
	_	—	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition					

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For $\overline{\text{Borrow}}$ the polarity is reversed. A subtraction is executed by adding the two's complement of the

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

		BANK5		BANK6		BANK7
	280h		300h		380h	
rs		Core Registers		Core Registers		Core Registers
		(Table 3-2)		(Table 3-2)		(Table 3-2)
	28Bh		30Bh		38Bh	
	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
	28Dh	_	30Dh	_	38Dh	_
	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
	28Fh	_	30Fh	_	38Fh	_
	290h	_	310h	_	390h	_
	291h	_	311h	_	391h	IOCAP
	292h	_	312h	_	392h	IOCAN
	293h	_	313h	_	393h	IOCAF
	294h	_	314h	_	394h	_
	295h	_	315h	_	395h	_
	296h	_	316h	_	396h	_
	297h	_	317h	_	397h	IOCCP
	298h		318h	_	398h	IOCCN
	299h	_	319h	_	399h	IOCCF
	29Ah	_	31Ah	_	39Ah	_
	29Bh	_	31Bh	_	39Bh	_
	29Ch		31Ch		39Ch	_
	29Dh	_	31Dh	_	39Dh	_
	20Fh		2456		2056	

_

General Purpose Register 80 Bytes

Accesses 70h – 7Fh

TABLE 3-4: PIC16(L)F1575 MEMORY MAP, BANKS 0-7 BANK0 BANK1

BANK2

000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		C												
	(Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	
00Dh	—	08Dh	—	10Dh	—	18Dh	_	20Dh	_	28Dh	_	30Dh	—	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	
00Fh	—	08Fh	—	10Fh	—	18Fh		20Fh	_	28Fh	—	30Fh	—	38Fh	
010h	—	090h	—	110h	—	190h	—	210h	—	290h	_	310h	—	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	_	311h	—	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	—	313h	—	393h	
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	—	314h	—	394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	—	315h	—	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	—	316h	—	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	—	397h	
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	—	39Ch	
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	_	29Dh	_	31Dh	—	39Dh	
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	—	31Eh	—	39Eh	
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses 70h – 7Fh												
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

BANK3

BANK4

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1575.

DS40001782C-page 26

TABLE 3						ARY (CONT					Value on
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	all other Resets
Bank 7											
38Ch	INLVLA		—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
38Dh	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	_	—	—	1111	1111
38Eh	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6(1)	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
38Fh to 390h	_	Unimpleme	nted							-	—
391h	IOCAP	_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	_	—	—	0000	00
395h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	_	—	—	0000	00
396h	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_	—	—	0000	00
397h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
398h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
399h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
39Ah to 39Fh	_	Unimpleme	Jnimplemented —							—	
Bank 8											
40Ch to 41Fh	_	Unimpleme	nted							_	_
Bank 9											
	-									1	

to 49Fh

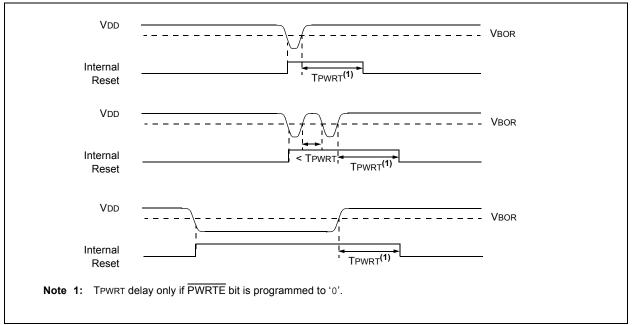
 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

48Ch


Unimplemented

5.5 Register Definitions: Oscillator Control

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>		_	SCS	<1:0>
bit 7							bit 0
Legend:			.,				
R = Readable		W = Writable I		•	nented bit, rea		
u = Bit is uncha	anged	x = Bit is unkn		-n/n = Value a	at POR and BC	OR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	If PLLEN in C SPLLEN bit i		ords = <u>1:</u> _L is always e	nabled (subject	t to oscillator re	equirements)	
bit 6-3	1111 = 16 M 1110 = 8 M 1101 = 4 M 1100 = 2 M 1011 = 1 M 1010 = 500 1001 = 250 1000 = 125	Hz or 32 MHz H Hz HF Hz HF kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz MF (defau kHz MF kHz MF kHz MF kHz MF 5 kHz MF 25 kHz HF ⁽¹⁾ 25 kHz MF	IF (see Secti e	on 5.2.2.1 "HFI	NTOSC")		
bit 2	Unimplemer	nted: Read as ')'				
bit 1-0	1x = Internal 01 = Reserve	System Clock Se oscillator block ed etermined by Fe		Configuration W	Vords.		
Note 1: Dup	licate frequen	cv derived from	HFINTOSC.				

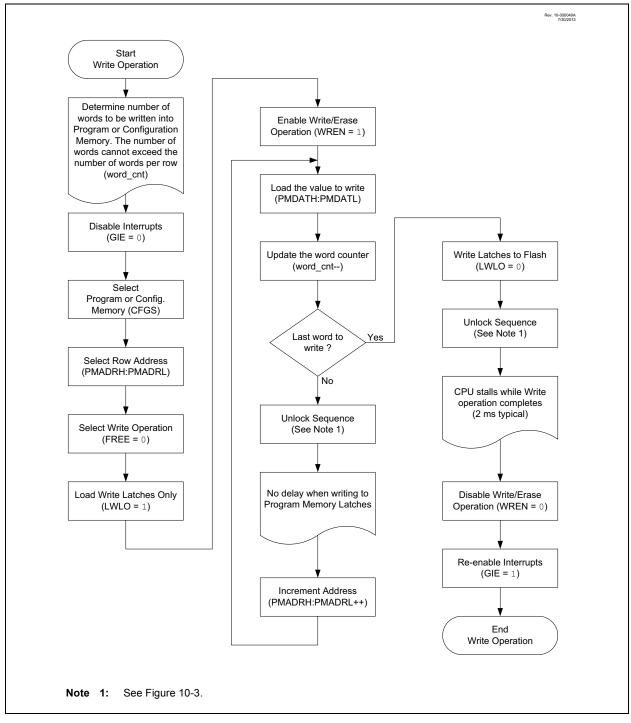
REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition


bit 7	SBOREN: Software Brown-Out Reset Enable bit
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
	If BOREN <1:0> in Configuration Words <u>≠ 01</u> :
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive
Note di	DODEN 41/02 hits are leasted in Canfiguration Wards

Note 1: BOREN<1:0> bits are located in Configuration Words.

U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0			
	C2IE	C1IE	—	—	—		—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets			
'1' = Bit is se	et	'0' = Bit is clea	ared							
bit 7	Unimplemen	ted: Read as '	כ'							
bit 6	C2IE: Compa	rator C2 Interru	upt Enable bit							
		the Comparato								
	0 = Disables	the Comparato	or C2 interrupt							
bit 5	C1IE: Compa	rator C1 Interru	upt Enable bit							
		the Comparato								
	0 = Disables	the Comparato	or C1 interrupt							
bit 4-0	Unimplemen	ted: Read as '	כ'							
Note: E	Bit PEIE of the IN	TCON register	must be							
	et to enable any p	•								

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

© 2016 Microchip Technology Inc.

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	
_	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	
bit 7							bit 0	
Legend:								
•	Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is ur	Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Reset				
'1' = Bit is s	set	'0' = Bit is cle	ared					
bit 7-6	Unimplemen	ited: Read as '	0'					
bit 5-4		PORTA Slew F		its				
		pins, respectiv	•					
	•	slew rate is limit slews at maxim						
bit 3		ited: Read as '						
bit 2-0	-	PORTA Slew F		its				
		pins, respectiv						
	1 = Port pin s	slew rate is limit	ed					
	0 = Port pin s	lews at maxim	um rate					

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 11-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	INLVLA5	INLVLA4	INLVLA3 ⁽¹⁾	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'

bit 5-0

INLVLA<5:0>: PORTA Input Level Select bits

- For RA<5:0> pins, respectively
- 1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

Note 1: The INLVLA3 bit selects the input type on this pin only when the MCLR function is not selected. When the MCLR function is selected, the input type for this pin will be ST.

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	
RB7	RB6	RB5	RB4		_	_		
	IND0	RB5	1104	_				
bit 7							bit (
Legend:								
R = Readable bit W		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is un	changed	x = Bit is unkne	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	et	'0' = Bit is clea	red					
bit 7-4	RB<7:4> : PO	RTB General Pu	irpose I/O Pin	bits ⁽¹⁾				
	1 = Port pin is	<u>></u> Vін						
	0 = Port pin is	<u><</u> VIL						
hit 3_0	Unimplement	tod. Bead as '0'						

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB Tri-State Control bits
	1 = PORTB pin configured as an input (tri-stated)
	0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATB<7:4>: PORTB Output Latch Value bits⁽¹⁾

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 13-4:	IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER ⁽¹⁾
----------------	--

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable bit	:	U = Unimplemented bit, read as '0'					
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets		
'1' = Bit is set '0' = Bit is cleared									

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
 - 0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0	Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	_	_	—
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>**: Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

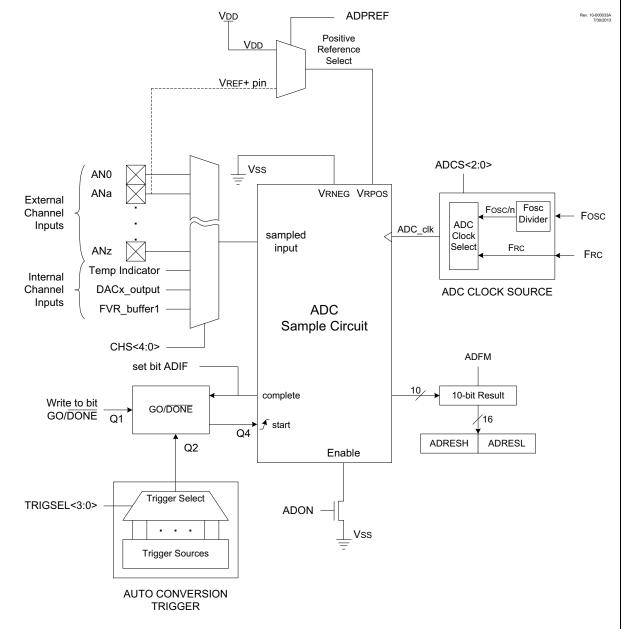
REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—
bit 7	-						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	1 = An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

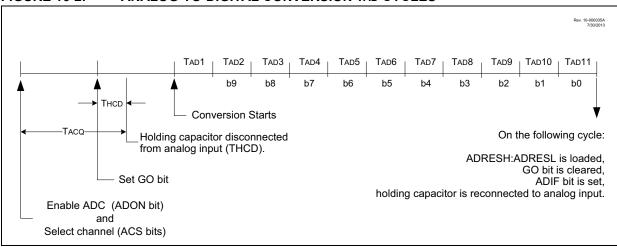
bit 3-0 Unimplemented: Read as '0'


Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC. The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.



ADC Clock Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0 >	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs	
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs	
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs	
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs	
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs	
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs	
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACxCON1 register.

The DAC output voltage can be determined by using Equation 17-1.

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 27-16.

17.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DACxOUTn) is not intended to drive an external load.

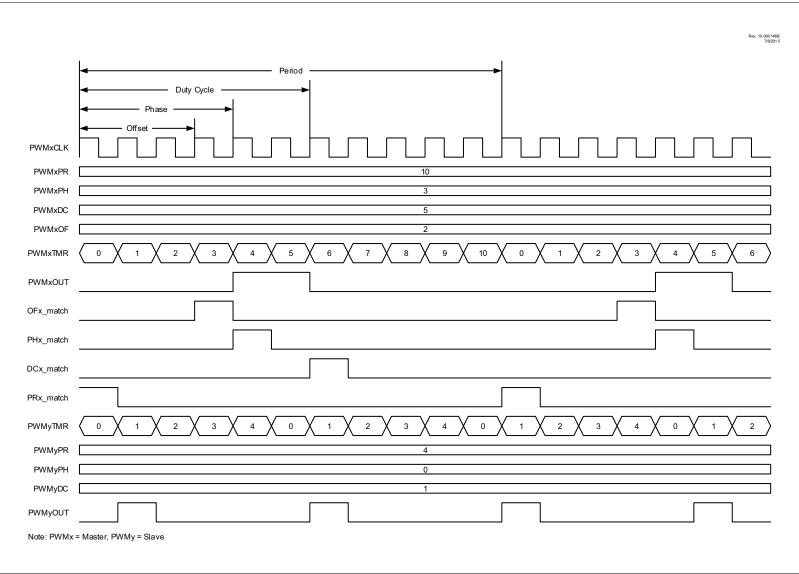
17.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

17.5 Effects of a Reset

A device Reset affects the following:

- DACx is disabled.
- DACx output voltage is removed from the DACxOUTn pin(s).
- The DACR<4:0> range select bits are cleared.


EQUATION 17-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

$$DACx_output = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE-$$

Note: See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.

FIGURE 23-8: INDEPENDENT RUN MODE TIMING DIAGRAM

PIC16(L)F1574/5/8/9

TABLE 27-5: MEMORY PROGRAMMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0		9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	_	—	10	mA	
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	-	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	—	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

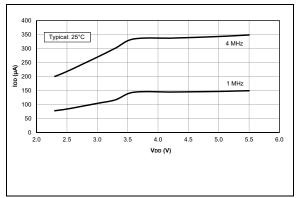


FIGURE 28-7: IDD Typical, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

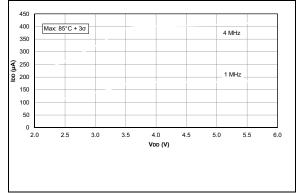


FIGURE 28-8: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

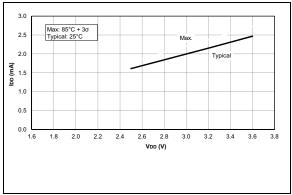
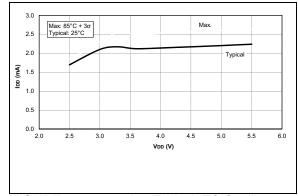



FIGURE 28-9: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-10: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

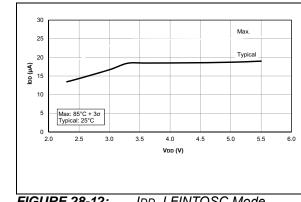


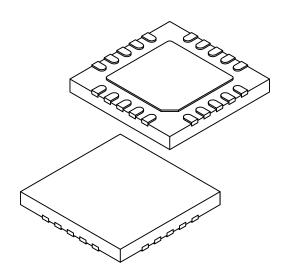
FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1574/5/8/9 Only.

12 (**V**rl) 10 8 Typical 4 2 0 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.8 1.6 VDD (V) FIGURE 28-11: IDD, LFINTOSC Mode,

Max.

Fosc = 31 kHz, PIC16LF1574/5/8/9 Only.

18


16

14

Max: 85°C + 3o Typical: 25°C

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Terminals	N	20				
Pitch	е		0.50 BSC			
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.60	2.70	2.80		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.60	2.70	2.80		
Terminal Width	b	0.20	0.25	0.30		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (2/2015)

Initial release of this document.

Revision B (09/2015)

Added Section 5.4: Clock Switching Before Sleep.

Updated Low-Power Features and Memory sections on cover page.

Updated Examples 3-2 and 16-1; Figures 8-1, 22-1, and 23-8 through 23-13; Registers 8-1, 23-6, 24-2, and 24-3; Sections 8.2.2, 16.2.6, 22.0, 23.3.3, 24.9.1.2, 24.11.1 and 27.1; and Tables 27-1, 27-2, 27-3, 27-8 and 27-11.

Revision C (01/2016)

Added graphs to chapter "DC and AC Characteristics Graphs and Charts". Other minor corrections.