

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1578-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Packages	PDIP	SOIC	TSSOP	SSOP	UQFN
PIC16(L)F1574	•	•	•		•
PIC16(L)F1575	•	•	•		•
PIC16(L)F1578	•	•		•	•
PIC16(L)F1579	•	•		•	•

Note: Pin details are subject to change.

0/1	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	Timers	MWG	EUSART	CWG	Interrupt	Pull-up	Basic
RA0	19	16	AN0	DAC1OUT1	C1IN+	-	—	-	_	IOC	Y	ICSPDAT
RA1	18	15	AN1	VREF+	C1IN0-/C2IN0-		—		—	IOC	Υ	ICSPCLK
RA2	17	14	AN2	-	—	T0CKI ⁽¹⁾	—		CWG1IN ⁽¹⁾	INT ⁽¹⁾ /IOC	Υ	
RA3	4	1	—	—	—	—	—	—	—	IOC	Υ	MCLR/Vpp
RA4	3	20	AN3	—	—	T1G ⁽¹⁾	_	_	—	IOC	Y	CLKOUT
RA5	2	19	_	_	—	T1CKI ⁽¹⁾	_	_	_	IOC	Υ	CLKIN
RB4	13	10	AN10	_	—		—		—	IOC	Υ	
RB5	12	9	AN11	—	—		—	RX ^(1,3)	—	IOC	Υ	
RB6	11	8		-	—		—		-	IOC	Υ	
RB7	10	7	_	_	_	_	—	CK ⁽¹⁾	_	IOC	Υ	_
RC0	16	13	AN4	_	C2IN+	_	—	_	_	IOC	Υ	_
RC1	15	12	AN5	_	C1IN1-/C2IN1-	_	_	_	_	IOC	Υ	_
RC2	14	11	AN6	_	C1IN2-/C2IN2-	_	_	_	_	IOC	Y	_
RC3	7	4	AN7	_	C1IN3-/C2IN3-	_	_	_	_	IOC	Υ	_
RC4	6	3	ADCACT ⁽¹⁾	_		_	_	_	_	IOC	Y	_
RC5	5	2	_	_		_	_	_	_	IOC	Υ	_
RC6	8	5	AN8	—	_	—	—	—	—	IOC	Y	—
RC7	9	6	AN9	—	_	_	—	_	—	IOC	Y	_
Vdd	1	18	—	—	_	—	—	—	—	—	—	Vdd
Vss	20	17	_	—	_	_	—	_	—	—	—	Vss
	—	—	—	—	C1OUT	—	PWM10UT	DT ⁽³⁾	CWG1A	—	—	—
OUT ⁽²⁾	_	—		—	C2OUT		PWM2OUT	СК	CWG1B	—	—	
50.	—	—	—	—	—	—	PWM3OUT	TX	—	—	—	—
	—	—	—	—	—	—	PWM4OUT	—	—	—	—	—

TABLE 4: 20-PIN ALLOCATION TABLE (PIC16(L)F1578/9)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS Input Selection registers.

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS Output Selection registers.
 These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

1.1 Register and Bit Naming Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode:

Example 1:

MOVLW ~(1<<G1MD1) ANDWF COG1CON0,F MOVLW 1<<G1MD2 | 1<<G1MD0 IORWF COG1CON0,F

Example 2:

BSF	COG1CON0,G1MD2
BCF	COG1CON0,G1MD1
BSF	COG1CON0,G1MD0

1.1.3 REGISTER AND BIT NAMING EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere to these naming conventions. Peripherals that have existed for many years and are present in almost every device are the exceptions. These exceptions were necessary to limit the adverse impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table in the registers section indicating the long name prefix for each peripheral instance. Peripherals that fall into the exception category will not have this table. These peripherals include, but are not limited to, the following:

- EUSART
- MSSP

3.5 Stack

FIGURE 3-5:

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-5 through 3-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

ACCESSING THE STACK EXAMPLE 1

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

	Rev. 10-00043A 7/502013
TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0E	N
0x0D	
0x0C	
0x0B	Initial Stack Configuration:
0x0A	
0x09	After Reset, the stack is empty. The
0x08	Pointer is pointing at 0x1F. If the Stack
0x07	Overflow/Underflow Reset is enabled, the
0x06	Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL register will
0x04	0x0F.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F (STVREN = 1)
``	\mathbb{N}

© 2016 Microchip Technology Inc.

4.2 Register Definitions: Configuration Words

R/P-1 U-1 U-1 R/P-1 R/P-1 U-1 BOREN<1:0>(1) CLKOUTEN bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1 R/P-1** U-1 R/P-1 CP(2) PWRTE⁽¹⁾ MCLRE WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as '1' bit 11 **CLKOUTEN:** Clock Out Enable bit 1 = OFF - CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin 0 = ON - CLKOUT function is enabled on CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ - Brown-out Reset enabled. The SBOREN bit is ignored. 11 = ON 10 = SLEEP - Brown-out Reset enabled while running and disabled in Sleep. The SBOREN bit is ignored. 01 = SBODEN- Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = OFF- Brown-out Reset disabled. The SBOREN bit is ignored. bit 8 Unimplemented: Read as '1' CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = OFF – Code protection off. Program Memory can be read and written. 0 = ON - Code protection on. Program Memory cannot be read or written externally. bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (ON): This bit is ignored. MCLR/VPP pin function is MCLR; Weak pull-up enabled. If LVP bit = 0 (OFF): $1 = ON - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = OFF – MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of pin's WPU control bit. **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = OFF-PWRT disabled 0 = ON - PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit bit 4-3 - WDT enabled. SWDTEN is ignored. 11 = ON 10 = SLEEP - WDT enabled while running and disabled in Sleep. SWDTEN is ignored. 01 = SWDTEN-WDT controlled by the SWDTEN bit in the WDTCON register 00 = OFF- WDT disabled. SWDTEN is ignored. bit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 = ECM01 = ECL- External Clock, Low-Power mode: CLKI on CLKI 00 = INTOSC-I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

REGISTER 4-1: CONFIGURATION WORD 1

5.5 Register Definitions: Oscillator Control

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>			SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	SPLLEN: Sot If PLLEN in C SPLLEN bit is If PLLEN in C 1 = 4x PLL is 0 = 4x PLL is	ftware PLL Ena Configuration W s ignored. 4x P Configuration W s enabled s disabled	able bit ′ <u>ords = 1:</u> LL is always e ′ <u>ords = 0:</u>	nabled (subject	to oscillator re	equirements)	
bit 6-3 IRCF<3:0>: Internal Oscillator Frequency S 1111 = 16 MHz HF 1110 = 8 MHz or 32 MHz HF (see Section 1101 = 4 MHz HF 1100 = 2 MHz HF 1010 = 500 kHz HF 1010 = 500 kHz HF ⁽¹⁾ 1001 = 250 kHz HF ⁽¹⁾ 1000 = 125 kHz HF ⁽¹⁾ 0111 = 500 kHz MF 0101 = 125 kHz MF 0101 = 125 kHz MF 0101 = 31.25 kHz MF 0101 = 31.25 kHz MF				Select bits on 5.2.2.1 "HFI)	NTOSC")		
bit 2	Unimplemen	ted: Read as '	0'				
bit 1-0	SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Reserved 00 = Clock determined by FOSC<1:0> in Configuration Words.						
Note 1: D	uplicate frequen	cy derived from	HFINTOSC.				

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1574		
PIC16(L)F1575	20	22
PIC16(L)F1578	52	52
PIC16(L)F1579		

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
RB7	RB6	RB5	RB4	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	red				
bit 7-4	bit 7-4 RB<7:4> : PORTB General Purpose I/O Pir		bits ⁽¹⁾				
	1 = Port pin is	<u>></u> Vін					
	0 = Port pin is	<u><</u> VIL					
h:+ 0 0	O University of Deed as (o)						

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB Tri-State Control bits
	1 = PORTB pin configured as an input (tri-stated)
	0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATB<7:4>: PORTB Output Latch Value bits⁽¹⁾

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
—	—	ANSB5	ANSB4	—	—		—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3-0	Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- · Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined									
	as a digital input may cause the input									
	buffer to conduct excess current.									

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<7:0> pins (PIC16(L)F1574/5 only)
- AN<11:0> pins (PIC16(L)F1578/9 only)
- Temperature Indicator
- DAC1_output
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 16.2.6 "ADC Conversion Procedure"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd
- FVR_buffer1

The negative voltage reference (ref-) source is:

Vss

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 27.0 "Electrical Specifications"** for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	_	—		ADRE	S<9:8>	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknow		nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 16-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

bit 7-2 **Reserved**: Do not use.

bit 1-0	ADRES<9:8>: ADC Result Register bits
	Upper two bits of 10-bit conversion result

REGISTER 16-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits Lower eight bits of 10-bit conversion result

20.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

20.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- · TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

FIGURE 20-3: TIMER1 GATE ENABLE MODE

FIGURE 22-10: SYNCHRONOUS TRANSMISSION

TABLE 22-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
SPBRGL	BRG<7:0>								205*
SPBRGH	BRG<15:8>								205*
TXREG	EUSART Transmit Data Register								194*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

FIGURE 22-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit	
RCIF bit (Interrupt)	
Read RCREG	ŕ
Note: Timing dia	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

~

TABLE 22-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	_	_	TMR2IF	TMR1IF	90
RCREG	EUSART Receive Data Register								197*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
SPBRGL	BRG<7:0>							205*	
SPBRGH	BRG<15:8>								205*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

Page provides register information. *

PIC16(L)F1574/5/8/9

PIC16(L)F1574/5/8/9

	.0-5.	ENHANCED MID-RAN	GE INSTRUCTION 3							
Mner	nonic,	Description		Cycles		14-Bit	Opcode	Status	Notos	
Oper	rands			ycles	MSb			LSb	Affected	Notes
		BYTE-OI	RIENTED FILE REGISTER	R OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1		00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1		11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1		00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1		11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1		11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1		11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1		00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1		00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1		00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1		00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1		00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1		00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1		00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1		00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carr	ry 1		00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Ca	arry 1		00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1		00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W fr	rom f 1		11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1		00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1		00	0110	dfff	ffff	Z	2
		BY	TE ORIENTED SKIP OPE	RATIC	ONS					
DECEST	f. d	Decrement f. Skip if 0	1(2	2)	0.0	1011	dfff	ffff		1.2
INCES7	f. d	Increment f. Skip if 0	1(2	2)	0.0	1111	dfff	ffff		1.2
	, -	BIT OD			ATION	<u> </u>				,
	£ h	Dit Clean f		UPER		3	1.555			
BCF	I, D f h	Dit Clear I Dit Sot f	1		01	0120	DIII	LLLL		2
BSF	I, D	Bit Set I	1		01	ααιυ	IIIQ	IIII		2
		B	IT-ORIENTED SKIP OPER	RATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 ((2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 ((2)	01	11bb	bfff	ffff		1, 2
			LITERAL OPERATIO	NS						
ADDLW	k	Add literal and W	1		11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1		11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with V	V 1		11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1		00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1		11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1		11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1		11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with	W 1		11	1010	kkkk	kkkk	Z	

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

*

TABLE 27-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz		
OS10*	TWARM	HFINTOSC Wake-up from Sleep Start-up Time	_		5	15	μS		
		LFINTOSC Wake-up from Sleep Start-up Time	—		0.5		ms		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 27-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature.

FIGURE 27-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16		32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	-	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	-	+0.25%	%	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1574/5/8/9

FIGURE 28-61: Comparator Input at 25°C, Normal Power Mode, (CxSP = 1).

FIGURE 28-62: Sleep Mode, Wake Period with HFINTOSC Source, LF Devices Only.

FIGURE 28-63: Low-Power Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 1, F Devices Only.

FIGURE 28-65: Temperature Indicator Initial Offset, High Range, Temp = 20°C, F Devices Only.

FIGURE 28-64: Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 0, F Devices Only.

FIGURE 28-66: Temperature Indicator Initial Offset, Low Range, Temp = 20°C, F Devices Only.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		14			
Pitch	е		0.65 BSC			
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E	6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	(L1)		1.00 REF			
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.19	-	0.30		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2