E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1578-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Peripherals

- 10-Bit Analog-to-Digital Converter (ADC):
 - Up to 12 external channels
 - Conversion available during Sleep
- Two Comparators:
 - Low-Power/High-Speed modes
 - Fixed Voltage Reference at (non)inverting input(s)
 - Comparator outputs externally accessible
 - Synchronization with Timer1 clock source
 - Software hysteresis enable
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:

TABLE 1:

- Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

Clocking Structure

- Precision Internal Oscillator:
 - Factory calibrated ±1%, typical
 - Software-selectable clock speeds from 31 kHz to 32 MHz
- · External Oscillator Block with:
 - Two external clock modes up to 32 MHz
- Digital Oscillator Input Available

Program Flash Memory Memory 8-Bit/16-Bit Timers SRAM (bytes) Data Sheet Index I0-Bit ADC (ch) Comparators **I6-Bit PWM** Bit DAC Debug⁽¹⁾ (Kwords) Pins (Kbytes) EUSART Program Flash CWG PPS Device <u>0</u> Data PIC12(L)F1571 1.75 2/4(2) 128 6 1 3 4 1 1 0 Ν Ι (A) 1 2/4(2) PIC12(L)F1572 (A) 2 3.5 256 6 1 3 4 1 1 1 Ν L 2/5(3)PIC16(L)F1574 12 2 (B) 4 7 512 4 8 1 1 1 Y Т 2/5(3) PIC16(L)F1575 8 14 1024 12 2 4 8 1 1 1 Y I (B) 2/5⁽³⁾ PIC16(L)F1578 (B) 4 7 512 18 2 4 12 1 1 1 Y L 2/5(3) PIC16(L)F1579 8 14 18 2 12 1 Y (B) 1024 4 1 1 Т

Note 1: I – Debugging integrated on chip.

2: Three additional 16-bit timers available when not using the 16-bit PWM outputs.

PIC12(L)F1571/2 AND PIC16(L)F1574/5/8/9 FAMILY TYPES

3: Four additional 16-bit timers available when not using the 16-bit PWM outputs.

Data Sheet Index:

- A) DS-40001723 PIC12(L)F1571/2 Data Sheet, 8-Pin Flash, 8-bit MCU with High-Precision 16-bit PWM
- B) Future Release PIC16(L)F1574/5/8/9 Data Sheet, 8-Pin Flash, 8-bit MCU with High-Precision 16-bit PWM

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

1.1 Register and Bit Naming Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode:

Example 1:

MOVLW ~(1<<G1MD1) ANDWF COG1CON0,F MOVLW 1<<G1MD2 | 1<<G1MD0 IORWF COG1CON0,F

Example 2:

BSF	COG1CON0,G1MD2
BCF	COG1CON0,G1MD1
BSF	COG1CON0,G1MD0

1.1.3 REGISTER AND BIT NAMING EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere to these naming conventions. Peripherals that have existed for many years and are present in almost every device are the exceptions. These exceptions were necessary to limit the adverse impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table in the registers section indicating the long name prefix for each peripheral instance. Peripherals that fall into the exception category will not have this table. These peripherals include, but are not limited to, the following:

- EUSART
- MSSP

		BANK5		BANK6		BANK7
	280h		300h		380h	
rs		Core Registers		Core Registers		Core Registers
		(Table 3-2)		(Table 3-2)		(Table 3-2)
	28Bh		30Bh		38Bh	
	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
	28Dh	_	30Dh	_	38Dh	_
	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
	28Fh	_	30Fh	_	38Fh	_
	290h	_	310h	_	390h	_
	291h	_	311h	_	391h	IOCAP
	292h	_	312h	_	392h	IOCAN
	293h	_	313h	_	393h	IOCAF
	294h	_	314h	_	394h	_
	295h	_	315h	_	395h	_
	296h	_	316h	_	396h	_
	297h	_	317h	_	397h	IOCCP
	298h		318h	_	398h	IOCCN
	299h	_	319h	_	399h	IOCCF
	29Ah	_	31Ah	_	39Ah	_
	29Bh	_	31Bh	_	39Bh	_
	29Ch		31Ch		39Ch	_
	29Dh	_	31Dh	_	39Dh	_
	20Fh		2456		2056	

_

General Purpose Register 80 Bytes

Accesses 70h – 7Fh

TABLE 3-4: PIC16(L)F1575 MEMORY MAP, BANKS 0-7 BANK0 BANK1

BANK2

000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		C												
	(Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	
00Dh	—	08Dh	—	10Dh	—	18Dh	_	20Dh	_	28Dh	_	30Dh	—	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	
00Fh	—	08Fh	—	10Fh	—	18Fh		20Fh	_	28Fh	—	30Fh	—	38Fh	
010h	—	090h	—	110h	—	190h	—	210h	—	290h	_	310h	—	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	_	311h	—	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	—	313h	—	393h	
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	—	314h	—	394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	—	315h	—	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	—	316h	—	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	—	397h	
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	_	39Ch	
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	_	29Dh	_	31Dh	—	39Dh	
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	—	31Eh	—	39Eh	
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses 70h – 7Fh												
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

BANK3

BANK4

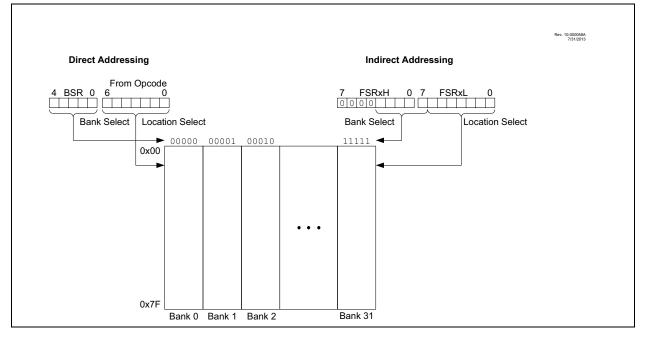
Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1575.

DS40001782C-page 26

TABLE 3-5: PIC16(L)F1578 MEMORY MAP, BANKS 0-7

	BANK0		, BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	-	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	—
010h	_	090h	-	110h	_	190h	_	210h	_	290h	_	310h	_	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	—	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	_	313h	—	393h	IOCAF
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h		396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	_	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah		39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh		39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh		09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh		39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh	_	39Fh	_
020h	General Purpose	0A0h	General Purpose	120h	General Purpose	1A0h	General Purpose	220h	General Purpose	2A0h	General Purpose	320h 32Fh 330h	General Purpose Register 16 Bytes	3A0h	Unimplemented Read as '0'
06Fh	Register 80 Bytes	0EFh	Register 80 Bytes	16Fh	Register 80 Bytes	1EFh	Register 80 Bytes	26Fh	Register 80 Bytes	2EFh	Register 80 Bytes	36Fh	Unimplemented Read as '0'	3EFh	Read as 0
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
0.011	Common RAM	5. 611	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh	2.011	Accesses 70h – 7Fh	2. 011	Accesses 70h – 7Fh	0.011	Accesses 70h – 7Fh	5. 0.1	Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	


Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1578.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

PIC16(L)F1574/5/8/9

FIGURE 5-3:	INTERNAL OSCILLATOR SWITCH TIMING
\$#\$KTO\$C	
HFINTOSC/	Craviliana Onlay ⁽⁹⁾ 2 cycle Syre. Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
88989709C	LENYXXXX (WET enabled)
HFINTOSC/ MENNECOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
SINTORC	MFINYOSC/MFINYOSC URINTOSO hims off unless WOT is enabled
1989090	
HFRATOSO/ SAFINTOSO	
System Clock	
Note () See	Table 5-1, "Craditutor Switching Dalays" for more information.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to Section 8.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

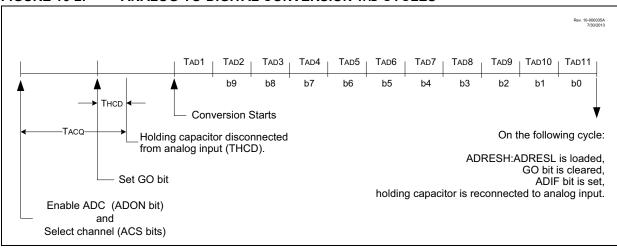
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE	87
PIE2	_	C2IE	C1IE	_	_	_	_	_	88
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	_	_	_	_	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	_	_	TMR2IF	TMR1IF	90
PIR2		C2IF	C1IF						91
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	92

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimpleme	nted bit, read as	s 'O'	
	n only be set	x = Bit is unkno		•	-	√alue at all other Ⅰ	Resets
'1' = Bit is	set	'0' = Bit is clea	red	HC = Bit is clear			
h :+ 7		tod. Dood on (1)					
bit 7	-	ted: Read as '1'					
bit 6	•	guration Select bit Configuration, Use		ID Registers			
		Flash program me		ID Registers			
bit 5	LWLO: Load	Write Latches On	ly bit ⁽³⁾				
		addressed progra	•	e latch is loaded/ι	pdated on the	next WR comman	d
		ressed program m	•	h is loaded/update	ed and a write of	all program mem	ory write latche
		itiated on the nex					
bit 4	•	am Flash Erase E					
		s an erase operati s an write operatio			rdware cleared	upon completion)	
bit 3		gram/Erase Error					
		n indicates an im		or erase sequend	e attempt or te	rmination (bit is s	et automatical
		et attempt (write '	,	,			
	0 = The prog	gram or erase ope	ration completed	d normally.			
bit 2	•	am/Erase Enable					
	•	rogram/erase cyc programming/eras		lach			
bit 1	WR: Write Co	0 0	ing of program i	10311			
		a program Flash	orogram/erase o	peration			
		ration is self-timed	0	•	re once operatio	on is complete.	
		bit can only be se	, ,				
	0 = Program	/erase operation	to the Flash is co	omplete and inact	ive.		
bit 0	RD: Read Co						
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	lware. The RD bit	can only be se
	•	red) in software. t initiate a prograr	n Flash read.				
Note 1:	Unimplemented bit						
2:	The WRERR bit is		by hardware whe	en a program mer	nory write or era	ase operation is st	arted (WR = 1
3:	The LWLO bit is igr	-	-		-	•	

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER


3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

ADC Clock	Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source		20 MHz	16 MHz	8 MHz	4 MHz	1 MHz				
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs				
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs				
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs				
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs				
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs				
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs				
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs				

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

18.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

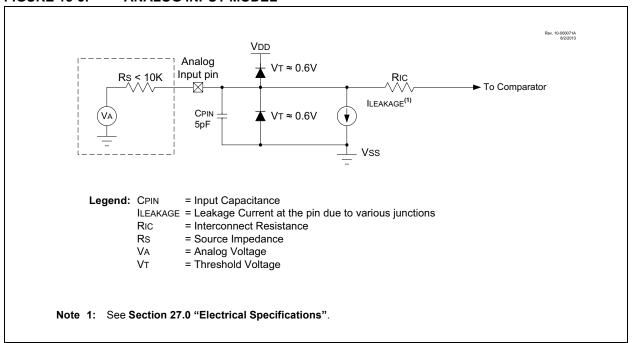
Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.6 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.



18.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward-biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

21.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—		T2OUT	PS<3:0>		TMR2ON	T2CKF	PS<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	OR/Value at all	other Resets
'1' = Bit is set	:	'0' = Bit is cle	ared				
L:1 7		utada Daradara (01				
bit 7	-	nted: Read as '		v Coloct bito			
bit 6-3	0000 = 1:1	3:0>: Timer2 Οι Destacelor	ilput Posiscale	er Select bits			
	0000 = 1.11						
	0010 = 1:3						
	0011 = 1 :4						
	0100 = 1:5 	Postscaler					
	0101 = 1:6 	Postscaler					
	0110 = 1:7 						
	0111 = 1:8						
	1000 = 1:9 I						
	1001 = 1:10 1010 = 1:11						
	1010 = 1.11						
	1100 = 1.12						
	1101 = 1:14						
	1110 = 1:15						
	1111 = 1:16	Postscaler					
bit 2	TMR2ON: T	imer2 On bit					
	1 = Timer2	is on					
	0 = Timer2	is off					
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	lect bits			
	00 = Presca	ller is 1					
	01 = Presca	ller is 4					
	10 = Presca	ller is 16					
	11 = Presca	ller is 64					
TABLE 21-1	: SUMMAF	RY OF REGIS	TERS ASSO		TH TIMER2		

REGISTER 21-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
PR2	Timer2 Modu	ule Period Re	gister						189*
T2CON	_		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						191
TMR2	Holding Reg	ister for the 8	-bit TMR2 Co	unt					189*

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

Note 1: PIC16(L)F1575 only.

TABLE 22-3:	BAUD RATE FORMULAS
-------------	---------------------------

	Configuration Bi	ts		Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Kale Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1	8-bit/Asynchronous	
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	x	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair.

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	204
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
SPBRGL		BRG<7:0>						205*	
SPBRGH	BRG<15:8>					205*			
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	—	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0
[
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
u = Bit is unc	hanged	x = Bit is unkno	own	-n/n = Value at	POR and BOR	Value at all oth	er Resets
'1' = Bit is set	t	'0' = Bit is clea	red				
bit 7-4 Unimplemented: Read as '0' bit 3 OFIE: Offset Interrupt Enable bit 1 = Interrupt CPU on Offset Match 0 = Do not interrupt CPU on Offset Match							
bit 2 PHIE: Phase Interrupt Enable bit 1 = Interrupt CPU on Phase Match 0 = Do not Interrupt CPU on Phase Match							
bit 1 DCIE: Duty Cycle Interrupt Enable bit 1 = Interrupt CPU on Duty Cycle Match 0 = Do not interrupt CPU on Duty Cycle Match			h				
bit 0 PRIE: Period Interrupt Enable bit 1 = Interrupt CPU on Period Match 0 = Do not interrupt CPU on Period Match							

REGISTER 23-2: PWMxINTE: PWM INTERRUPT ENABLE REGISTER

REGISTER 23-3: PWMxINTF: PWM INTERRUPT REQUEST REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
		_	_	OFIF	PHIF	DCIF	PRIF
bit 7	•			•	•		bit 0

Legend:		
HC = Bit is cleared by hard	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	OFIF: Offset Interrupt Flag bit ⁽¹⁾
	1 = Offset Match Event occurred
	0 = Offset Match Event did not occur
bit 2	PHIF: Phase Interrupt Flag bit ⁽¹⁾
	1 = Phase Match Event occurred
	0 = Phase Match Event did not occur
bit 1	DCIF: Duty Cycle Interrupt Flag bit ⁽¹⁾
	1 = Duty Cycle Match Event occurred
	0 = Duty Cycle Match Event did not occur
bit 0	PRIF: Period Interrupt Flag bit ⁽¹⁾
	1 = Period Match Event occurred
	0 = Period Match Event did not occur
Note 1:	Bit is forced clear by hardware while module is disabled (EN = 0)

Bit is forced clear by hardware while module is disabled (EN = 0).

REGISTER 23-15: PWMxTMRH: PWMx TIMER HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMR	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR<15:8>: PWM Timer High bits Upper eight bits of PWM timer counter

REGISTER 23-16: PWMxTMRL: PWMx TIMER LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
TMR<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMR<7:0>: PWM Timer Low bits Lower eight bits of PWM timer counter

24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- · Selectable dead-band clock source control
- · Selectable input sources
- · Output enable control
- · Output polarity control
- Dead-band control with independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

24.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 24.5 "Dead-Band Control"**. A typical operating waveform, with dead band, generated from a single input signal is shown in Figure 24-2.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 24.9 "Auto-Shutdown Control"**.

24.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

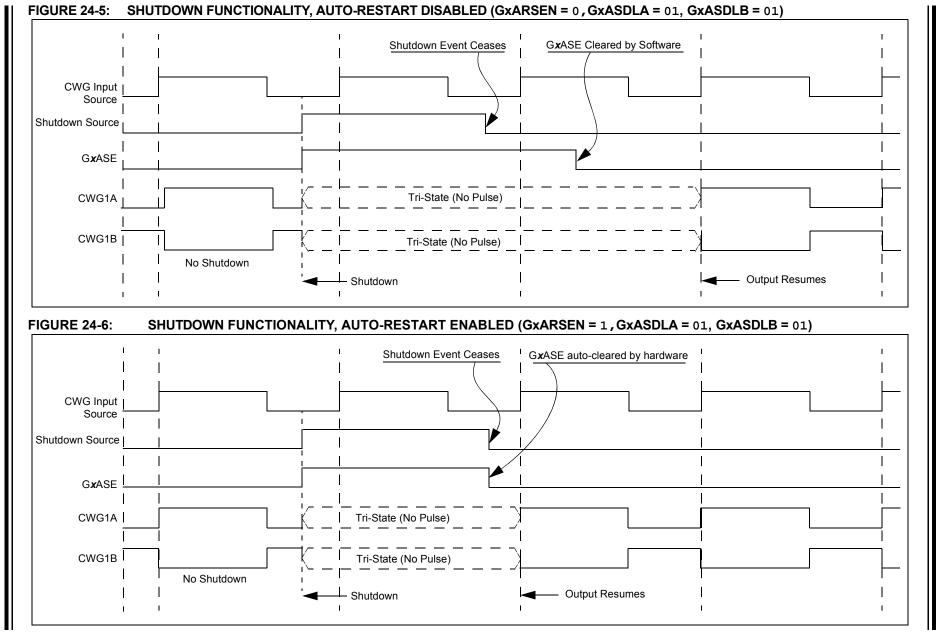
The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 24-1).

24.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 24-1.

TABLE 24-1:	SELECTABLE INPUT
	SOURCES

Source Peripheral	Signal Name	
CWG input pin	CWGxIN pin	
Comparator C1	C1OUT_sync	
Comparator C2	C2OUT_sync	
PWM1	PWM1_output	
PWM2	PWM2_output	
PWM3	PWM3_output	
PWM4	PWM4_output	

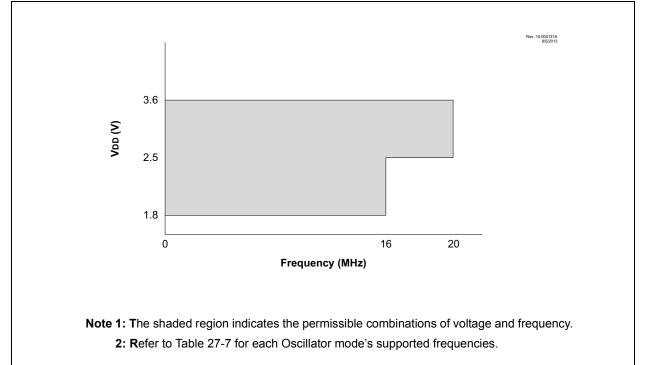

The input sources are selected using the GxIS<2:0> bits in the CWGxCON1 register (Register 24-2).

24.4 Output Control

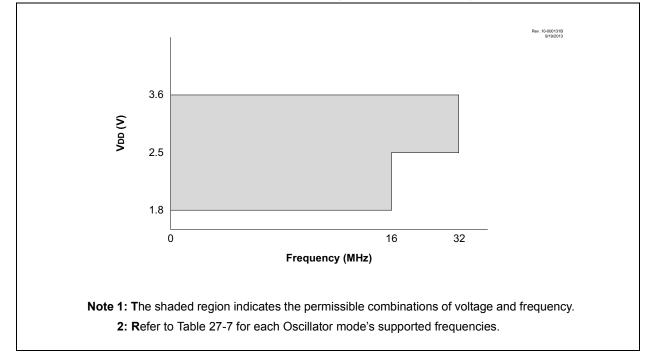
Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared.

24.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.

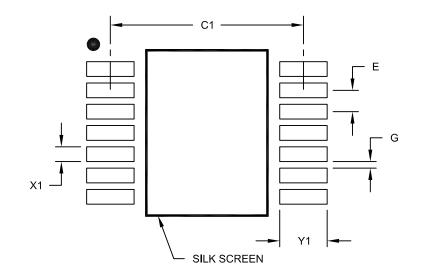


© 2016 Microchip Technology Inc


PIC16(L)F1574/5/8/9

PIC16(L)F1574/5/8/9

FIGURE 27-2: VOLTAGE FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C, PIC16LF1574/5/8/9 ONLY


Package Marking Information (Continued)

16-Lead UQFN (4x4x0.5mm) Example • XXXXX XXXXXX YXXXXX YXXXX PIC16 PIN 1-PIN 1-LF1575 ML @3 410017 WNNN

Legend	XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A