Microchip Technology - PIC16F1578-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1578-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABL	.E 3-9: PI	C16(L)F1574/5/8/	9 ME	MORY MAP,	BAN	KS 16-23								
	BANK16	•	BANK17		BANK18		BANK19		BANK20		BANK21		BANK22		BANK23
800h	Core Registers	880h	Core Registers	900h	Core Registers	980h	Core Registers	A00h	Core Registers	A80h	Core Registers	B00h	Core Registers	B80h	Core Registers
80Bh	(Table 3-2)	88Bh	(Table 3-2)	90Bh	(Table 3-2)	98Bh	(Table 3-2)	A0Bh	(Table 3-2)	A8Bh	(Table 3-2)	B0Bh	(Table 3-2)	B8Bh	(Table 3-2)
80Ch		88Ch		90Ch	_	98Ch	_	A0Ch	_	A8Ch	_	B0Ch		B8Ch	—
80Dh	_	88Dh	—	90Dh		98Dh		A0Dh	_	A8Dh	_	B0Dh	—	B8Dh	_
80Eh	—	88Eh	—	90Eh	_	98Eh	_	A0Eh	—	A8Eh	—	B0Eh	_	B8Eh	_
80Fh	—	88Fh	—	90Fh	_	98Fh	_	A0Fh	—	A8Fh	—	B0Fh	—	B8Fh	_
810h	—	890h		910h		990h		A10h	—	A90h		B10h	_	B90h	_
811h	—	891h	—	911h	—	991h	—	A11h	—	A91h	—	B11h	_	B91h	—
812h	—	892h	—	912h	—	992h	—	A12h	—	A92h	—	B12h	—	B92h	—
813h	—	893h	_	913h	—	993h	—	A13h	—	A93h	—	B13h	_	B93h	—
814h	—	894h	_	914h	—	994h	—	A14h	—	A94h	—	B14h	_	B94h	—
815h	—	895h	_	915h	—	995h	—	A15h	—	A95h	—	B15h	_	B95h	—
816h	—	896h	_	916h	—	996h	—	A16h	—	A96h	—	B16h	_	B96h	—
817h	—	897h	—	917h	—	997h		A17h	—	A97h		B17h	—	B97h	—
818h	—	898h	—	918h	—	998h	—	A18h	—	A98h	—	B18h	—	B98h	—
819h	—	899h	—	919h	—	999h		A19h	—	A99h		B19h	—	B99h	—
81Ah	—	89Ah	_	91Ah	—	99Ah	—	A1Ah	—	A9Ah	—	B1Ah	_	B9Ah	—
81Bh	—	89Bh	_	91Bh	—	99Bh	—	A1Bh	—	A9Bh	—	B1Bh	_	B9Bh	—
81Ch	_	89Ch	_	91Ch	_	99Ch	_	A1Ch	_	A9Ch		B1Ch	_	B9Ch	—
81Dh	_	89Dh	_	91Dh	_	99Dh	_	A1Dh	_	A9Dh		B1Dh	_	B9Dh	—
81Eh	_	89Eh	_	91Eh	_	99Eh		A1Eh	_	A9Eh		B1Eh	_	B9Eh	—
81Fh	—	89Fh	_	91Fh		99Fh		A1Fh	—	A9Fh		B1Fh	_	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BAOn	
	Unimplemented Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses														
	70h – 7Fh														
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'. PIC16(L)F1574/5/8/9

TABLE 3-10: PIC16(L)F1574/5/8/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers	C80h	Core Registers	D00h	Core Registers	D80h	Core Registers	E00h	Core Registers	E80h	Core Registers	F00h	Core Registers	F80h	Core Registers
C0Bh	(Table 3-2)	C8Bh	(Table 3-2)	D0Bh	(Table 3-2)	D8Bh	(Table 3-2)	E0Bh	(Table 3-2)	E8Bh	(Table 3-2)	F0Bh	(Table 3-2)	F8Bh	(Table 3-2)
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch		E0Ch		E8Ch		F0Ch	—	F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—							F0Dh	_		
C0Eh	—	C8Eh	—	D0Eh	_							F0Eh			
C0Fh	_	C8Fh	_	D0Fh	_							F0Fh	—		
C10h	_	C90h	_	D10h	—							F10h	—		
C11h	—	C91h	—	D11h	—							F11h	—		
C12h	—	C92h	—	D12h	—							F12h	—		
C13h	—	C93h	—	D13h	—							F13h	—		
C14h	—	C94h	—	D14h	—							F14h	—		
C15h	—	C95h	—	D15h	—							F15h			
C16h	—	C96h	—	D16h	—							F16h	_		
C17h		C97h	_	D17h	_							F17h			
C18h	—	C98h	—	D18h	—		See Table 3-11		See Table 3-12		See Table 3-12	F18h			See Table 3-13
C19h	_	C99h	_	D19h	_							F19h			
C1Ah	—	C9Ah	—	D1Ah	—							F1Ah	_		
C1Bh	—	C9Bh	—	D1Bh	—							F1Bh	_		
C1Ch	—	C9Ch	—	D1Ch	—							F1Ch	—		
C1Dh	_	C9Dh		D1Dh								F1Dh			
		C9En	_		_							FIEN			
C20h	_	C9Fn	_	D1Fn D20h	_							F1FN F20h			
02011		0/1011		DZOII								1 2011			
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'								Unimplemented Read as '0'		
C6Fh		CEEh		D6Fh		DEEh		F6F h		FFFh		F6Fh		FFFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'

PIC16(L)F1574/5/8/9

FIGURE 3-9: INDIRECT ADDRESSING

PIC16(L)F1574/5/8/9

5.2.2.7 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.8 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 27.0 "Electrical Specifications"**.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCF	<3:0>			SCS	<1:0>	69	
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	70	
OSCTUNE	—	_		TUN<5:0>						

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—	—	—	CLKOUTEN	BORE	N<1:0>	—	50
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>		FOSC	<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

17.6 Register Definitions: DAC Control

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0			
DACEN		DACOE	—	DACP	SS<1:0>					
bit 7							bit 0			
Legend:										
R = Readable bi	t	W = Writable bi	t	U = Unimplem	ented bit, read as	'0'				
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets			
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7 bit 6 bit 5	bit 7 DACEN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled Dit 6 Unimplemented: Read as '0' DACCE: DAC Voltage Output Enable bit									
	1 = DAC volta 0 = DAC volta	ge level is outpu ge level is discor	t on the DACOL	JT1 pin e DACOUT1 pin						
bit 4	Unimplemente	ed: Read as '0'								
bit 3-2	DACPSS<1:0> 11 = Reserve 10 = FVR_but 01 = VREF+ pi 00 = VDD	: DAC Positive S d ffer2 in	Source Select bi	its						
bit 1-0	Unimplemente	ed: Read as '0'								

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DACCON0	DACEN	_	DACOE	—	DACPS	S<1:0>	_	_	168
DACCON1	—		_		168				

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

18.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.6 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

18.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward-biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

21.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see Section 21.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

21.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

21.3 Timer2 Output

The output of TMR2 is T2_match.

The T2_match signal is synchronous with the system clock. Figure 21-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

FIGURE 21-3: T2_MATCH TIMING DIAGRAM

21.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

	D 1/1	11.0			11.0		
		0-0	K/W-U/U		0-0		
ABDOVF	RCIDL	_	SUKP	BRG10	—	WUE	ABDEN bit 0
							DILO
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit. read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set	U	'0' = Bit is cle	ared				
							,
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	Asynchronous	<u>s mode</u> :					
	1 = Auto-bauco	d timer overtiov d timer did not	ved overflow				
	Synchronous	mode:	overnow				
	Don't care						
bit 6	RCIDL: Recei	ive Idle Flag bi	t				
	Asynchronous	<u>s mode</u> : is idle					
	0 = Start bit h	as been receiv	ed and the red	ceiver is receiv	/ing		
	Synchronous	mode:			-		
	Don't care						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock I	Polarity Select	t bit			
	1 = Transmit i	<u>s moue</u> . inverted data to	the TX/CK n	in			
	0 = Transmit	non-inverted data to	ata to the TX/	CK pin			
	Synchronous	<u>mode</u> :					
	1 = Data is close 0 = Data is close 0	ocked on rising	g edge of the c	clock			
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit				
	1 = 16-bit Ba	ud Rate Gener	ator is used				
	0 = 8-bit Bau	d Rate Genera	itor is used				
bit 2	Unimplement	ted: Read as '	0'				
DIT 1		up Enable bit					
	1 = Receiver i	<u>s moue</u> : is waiting for a	falling edge M	No character w	vill be received. F	PCIE hit will be	sot WIIE will
	automatica	ally clear after	RCIF is set.				Set. WOL WII
	0 = Receiver	is operating no	rmally				
	Synchronous	mode:					
hit 0		Paud Dataat	Enchlo hit				
	ASVnchronous	-bauu Delect s mode:					
	1 = Auto-Bau	id Detect mode	e is enabled (c	lears when au	ito-baud is comp	lete)	
	0 = Auto-Bau	Id Detect mode	e is disabled		····P	- /	
	Synchronous	mode:					
	Dont care						

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

FIGURE 24-1: SIMPLIFIED CWG BLOCK DIAGRAM

PIC16(L)F1574/5/8/9

24.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

24.11 Configuring the CWG

The following steps illustrate how to properly configure the CWG to ensure a synchronous start:

- 1. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs.
- 2. Clear the GxEN bit, if not already cleared.
- 3. Set desired dead-band times with the CWGxDBR and CWGxDBF registers.
- 4. Setup the following controls in CWGxCON2 auto-shutdown register:
 - · Select desired shutdown source.
 - Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASE bit and clear the GxARSEN bit.
- 5. Select the desired input source using the CWGxCON1 register.
- 6. Configure the following controls in CWGxCON0 register:
 - · Select desired clock source.
 - Select the desired output polarities.
- 7. Set the GxEN bit.
- Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs.
- If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.

24.11.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 24-3). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level.

24.11.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to have resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 24-5 and Figure 24-6.

24.11.2.1 Software Controlled Restart

When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shut-down event by software.

Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

24.11.2.2 Auto-Restart

When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically.

The GxASE bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

PIC16(L)F1574/5/8/9

LSLF	Logical Left Shift	MOVF	Move f [/abe/] MOVF f,d			
Syntax:	[<i>label</i>]LSLF f{,d}	Syntax:				
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$			
	$(f < 6:0 >) \rightarrow dest < 7:1 >$	Status Affected:	Z			
Status Affected:	C, Z	Description:	The contents of register f is moved to a destination dependent upon the			
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.			
	C	Words:	1			
		Cycles:	1			
		Example:	MOVF FSR, 0			
LSRF	Logical Right Shift		After Instruction W = value in FSR register			
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1			

Syntax:	[<i>label</i>] LSRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	0 → dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 → register f → C

PIC16LF1574/5/8/9		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode							
PIC16F1574/5/8/9		Low-Power Sleep Mode, VREGPM = 1							
Param.	Device Characteristics	Min.	Typ†	Max.	Max.	Units		Conditions	
NO.				+85°C	+125°C		VDD	Note	
D022	Base IPD	_	0.10	1	8	μA	1.8	WDT, BOR, and FVR disabled, all	
		—	0.10	2	9	μA	3.0	Peripherals inactive	
D022	Base IPD		0.3	3	10	μA	2.3	WDT, BOR, and FVR disabled, all	
			0.4	4	12	μA	3.0	Peripherals inactive,	
		—	0.5	6	15	μA	5.0	VREGPM = 1	
D022A	Base IPD	—	10.4	16	18	μA	2.3	WDT, BOR, and FVR disabled, all	
		—	12.7	18	20	μA	3.0	Peripherals inactive,	
		—	13.8	21	26	μA	5.0	VREGPM = 0	
D023		_	0.4	2	9	μA	1.8	WDT Current	
		_	0.6	3	10	μA	3.0		
D023		—	0.6	6	15	μA	2.3	WDT Current	
		—	0.7	7	20	μA	3.0]	
		_	0.9	8	22	μA	5.0]	
D023A		—	15	28	30	μA	1.8	FVR Current	
		—	26	33	34	μA	3.0		
D023A		_	19	28	30	μA	2.3	FVR Current	
		_	22	35	36	μA	3.0		
		—	23	38	41	μA	5.0		
D024		—	7.5	17	20	μA	3.0	BOR Current	
D024		—	8.1	17	30	μA	3.0	BOR Current	
		—	9.2	20	40	μA	5.0		
D24A		—	0.3	4	10	μA	3.0	LPBOR Current	
D24A		—	0.5	5	14	μA	3.0	LPBOR Current	
		—	0.6	8	17	μA	5.0		
D026		—	0.1	1.5	9	μA	1.8	ADC Current (Note 3),	
		—	0.1	2.7	10	μA	3.0	No conversion in progress	
D026		—	0.3	4	11	μA	2.3	ADC Current (Note 3),	
		—	0.4	5	13	μA	3.0	No conversion in progress	
		—	0.5	8	16	μA	5.0		
D026A*		—	288		—	μA	1.8	ADC Current (Note 3),	
		_	288			μA	3.0	Conversion in progress	
D026A*		_	322	—	—	μA	2.3	ADC Current (Note 3),	
		_	322	—	—	μA	3.0	Conversion in progress	
		—	322	_	_	μA	5.0		

TABLE 27-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

Note 1: If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.

TABLE 27-14: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based		
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = $x11$ (ADC FRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—	11	—	TAD	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time	-	5.0		μS			
AD133*	THCD	Holding Capacitor Disconnect Time	_	1/2 TAD 1/2 TAD + 1TCY	_		Fosc-based ADCS<2:0> = x11 (ADC FRC mode)		
* These parameters are characterized but not tested									

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: The ADRES register may be read on the following TCY cycle.

TABLE 27-15: COMPARATOR SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CM01	VIOFF	Input Offset Voltage		±7.5	±60	mV	CxSP = 1, VICM = VDD/2		
CM02	VICM	Input Common Mode Voltage	0		Vdd	V			
CM03	CMRR	Common Mode Rejection Ration	_	50		dB			
CM04A		Response Time Rising Edge	_	400	800	ns	CxSP = 1		
CM04B	TDF0D(2)	Response Time Falling Edge	—	200	400	ns	CxSP = 1		
CM04C	TRESPY /	Response Time Rising Edge	_	1200		ns	CxSP = 0		
CM04D		Response Time Falling Edge	_	550	_	ns	CxSP = 0		
CM05*	Тмс2о∨	Comparator Mode Change to Output Valid	_	—	10	μS			
CM06	CHYSTER	Comparator Hysteresis	_	25		mV	CxHYS = 1, CxSP = 1		

* These parameters are characterized but not tested.

Note 1: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 27-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	Clsb	Step Size		VDD/32		V		
DAC02*	CACC	Absolute Accuracy	_	—	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	_	5K	_	Ω		
DAC04*	CST	Settling Time ⁽²⁾	_	_	10	μS		

* These parameters are characterized but not tested.

Note 1: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (2/2015)

Initial release of this document.

Revision B (09/2015)

Added Section 5.4: Clock Switching Before Sleep.

Updated Low-Power Features and Memory sections on cover page.

Updated Examples 3-2 and 16-1; Figures 8-1, 22-1, and 23-8 through 23-13; Registers 8-1, 23-6, 24-2, and 24-3; Sections 8.2.2, 16.2.6, 22.0, 23.3.3, 24.9.1.2, 24.11.1 and 27.1; and Tables 27-1, 27-2, 27-3, 27-8 and 27-11.

Revision C (01/2016)

Added graphs to chapter "DC and AC Characteristics Graphs and Charts". Other minor corrections.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0190-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.