

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1578t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	JDEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

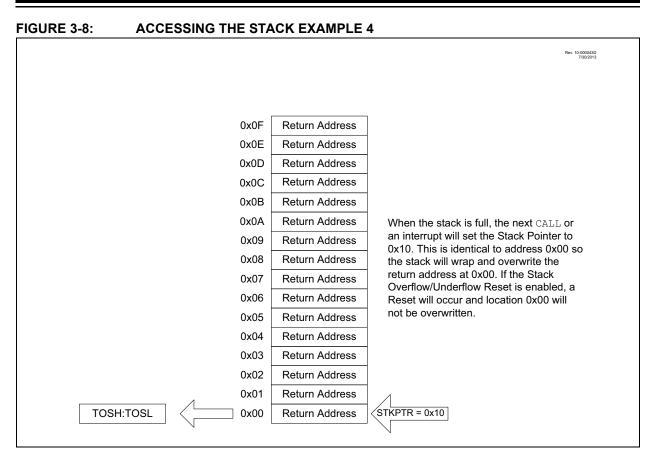
3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constant	s	
DW	DATA0	;First constant
DW	DATA1	;Second constant
DW	DATA2	
DW	DATA3	
my_funct	ion	
; LOT	S OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constant	s
MOVWF	FSR1L	
MOVLW	HIGH constan	nts;MSb is set
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	<pre>;carry from ADDLW?</pre>
INCF	FSR1H,f	;yes
MOVIW	0[FSR1]	
;THE PRO	GRAM MEMORY I	S IN W


TABLE 3-8:PIC16(L)F1575/9 MEMORY MAP, BANKS 8-15

400h 40Bh 40Ch	Core Registers (Table 3-2)	480h		1 r											
-			Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
40Ch	(14016-5-2)	48Bh	(Table 3-2)	50Bh	(Table 3-2)	58Bh	(Table 3-2)	60Bh	(Table 3-2)	68Bh	(Table 3-2)	70Bh	(Table 3-2)	78Bh	(Table 3-2)
10011	—	48Ch	—	50Ch	—	58Ch	—	60Ch	_	68Ch	_	70Ch	_	78Ch	—
40Dh	_	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	_	70Dh	—	78Dh	_
40Eh	_	48Eh	—	50Eh	—	58Eh	—	60Eh	_	68Eh	_	70Eh	_	78Eh	_
40Fh	_	48Fh	_	50Fh	_	58Fh	—	60Fh	—	68Fh	_	70Fh	—	78Fh	_
410h	_	490h	—	510h	—	590h	—	610h	—	690h	_	710h	—	790h	_
411h	—	491h	—	511h	—	591h	—	611h	—	691h	CWG1DBR	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	—	513h	—	593h	—	613h	—	693h	CWG1CON0	713h	—	793h	—
414h	—	494h	—	514h	—	594h	—	614h	_	694h	CWG1CON1	714h	_	794h	—
415h	—	495h	—	515h	—	595h	—	615h	_	695h	CWG1CON2	715h	_	795h	—
416h	—	496h	—	516h	—	596h	—	616h	_	696h	_	716h	_	796h	
417h	—	497h	—	517h	—	597h	—	617h	_	697h	—	717h	_	797h	—
418h	—	498h	—	518h	—	598h	—	618h	_	698h	_	718h	_	798h	
419h	—	499h	—	519h	—	599h	—	619h	_	699h	_	719h	_	799h	
41Ah	—	49Ah	—	51Ah	—	59Ah	—	61Ah	—	69Ah	—	71Ah	—	79Ah	—
41Bh	—	49Bh	—	51Bh	—	59Bh	—	61Bh	_	69Bh	—	71Bh	_	79Bh	—
41Ch	—	49Ch	—	51Ch	—	59Ch	—	61Ch	_	69Ch	—	71Ch	_	79Ch	—
41Dh	—	49Dh	—	51Dh	—	59Dh	—	61Dh	_	69Dh	_	71Dh	_	79Dh	
41Eh	—	49Eh	—	51Eh	—	59Eh	—	61Eh	_	69Eh	—	71Eh	_	79Eh	—
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose Register	6A0h		720h		7A0h	
	General		General		General		General	63Fh	32 Bytes		Unimplemented		Unimplemented		Unimplemented
	Purpose Register		Purpose Register		Purpose Register		Purpose Register	640h			Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		Unimplemented Read as '0'		iteau as o		iteau as o		Nedu as 0
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

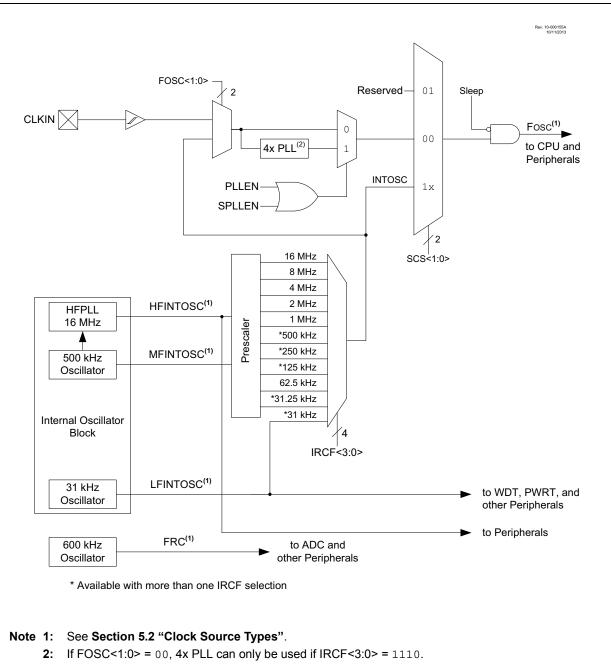
TABLE 3-13: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 31

		Bank 31	
	F8Ch		1
		Unimplemented	
		Read as '0'	
	FFOR		
	FE3h FE4h		
	FE5h	STATUS_SHAD	
	FE6h	WREG_SHAD	
		BSR_SHAD	
	FE7h	PCLATH_SHAD	
	FE8h	FSR0L_SHAD	
	FE9h	FSR0H_SHAD	
	FEAh	FSR1L_SHAD	
	FEBh	FSR1H_SHAD	
	FECh	_	
	FEDh	STKPTR	
	FEEh	TOSL	
	FEFh	TOSH	
		-	1
Legend:	-	Unimplemented data n	nemory locations,
-		l as '0'.	-

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing


The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

PIC16(L)F1574/5/8/9

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section
 5.3 "Clock Switching" for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	R/W-0/0	TXIE	0-0	0-0	TMR2IE	TMR1IE
bit 7	ADIE	RCIE	IVIE			TWIRZIE	bit 0
DIL 7							DILU
Logondi							
Legend: R = Readable	L:4	W = Writable	L:4		nonted bit read		
				•	mented bit, read		ther Decete
u = Bit is unch	langed	x = Bit is unki		-n/n = value a	at POR and BC	R/Value at all o	iner Resets
'1' = Bit is set		'0' = Bit is cle	ared				
L:1 7				.:.			
bit 7		imer1 Gate Inte	•				
		the Timer1 gate the Timer1 gate					
bit 6 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit							
		the ADC interru	•				
		the ADC interru	•				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
		the USART rec					
1.11.4		the USART rec	•				
bit 4		T Transmit Inte	•				
		the USART trar the USART tra					
bit 3-2	Unimplemer	nted: Read as '	0'				
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt Ei	nable bit			
1 = Enables the Timer2 to PR2 match interrupt							
	0 = Disables	the Timer2 to F	PR2 match inte	errupt			
bit 0		ner1 Overflow Ir					
		the Timer1 over					
	0 = Disables	the Timer1 ove	rtlow interrupt				
		ITCON register					
set	to enable any	peripheral inter	rupt.				

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE	87
PIE2	_	C2IE	C1IE	_	_	_	_	_	88
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	_	_	_	_	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	_	_	TMR2IF	TMR1IF	90
PIR2		C2IF	C1IF						91
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	92

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 27.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	х	Х	Active
1.0		Awake	Active
10	Х	Sleep	Disabled
0.1	1	х	Active
01	0	х	Disabled
00	х	Х	Disabled

TABLE 9-1: WDT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- · Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- Device wakes up from Sleep
- Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See **Section 5.0 "Oscillator Module"** for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section 3.0 "Memory Organization"** for more information.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = EXTRC, INTOSC, EXTCLK	
Change INTOSC divider (IRCF bits)	Unaffected

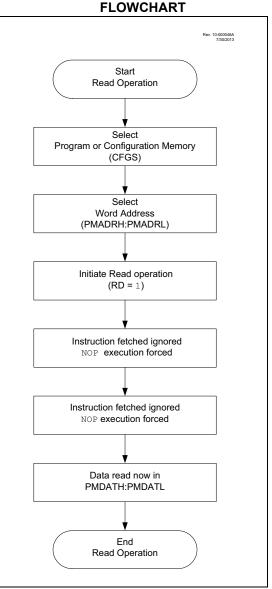
See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

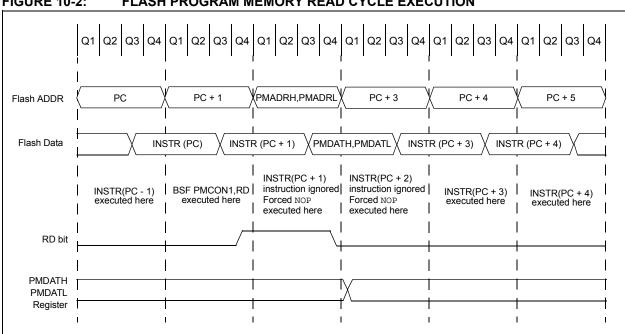
TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1574		
PIC16(L)F1575	32	32
PIC16(L)F1578	52	52
PIC16(L)F1579		

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:


- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.


Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH: PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ

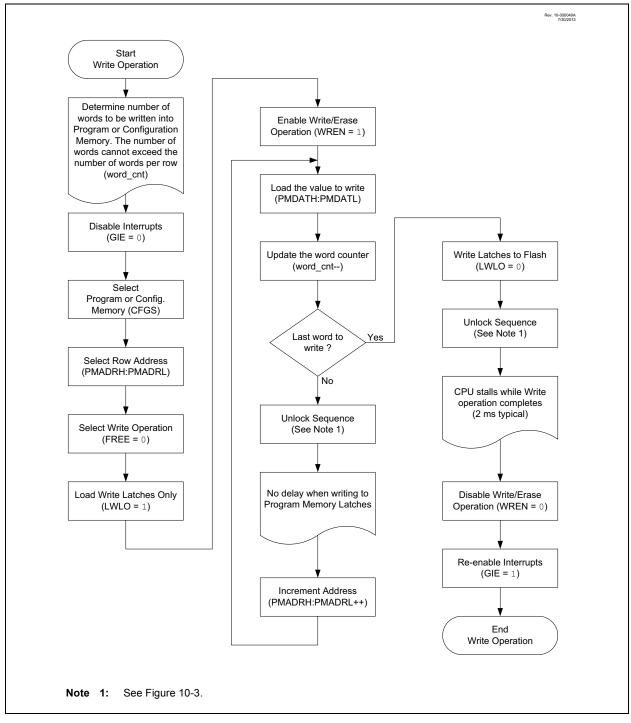


FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL PMADRL
                             ; Select Bank for PMCON registers
            PROG_ADDR_LO
   MOVLW
                             ;
   MOVWF
            PMADRL
                             ; Store LSB of address
            PROG_ADDR_HI
   MOVLW
                              ;
   MOVWF
            PMADRH
                              ; Store MSB of address
   BCF
            PMCON1,CFGS
                             ; Do not select Configuration Space
   BSF
            PMCON1,RD
                              ; Initiate read
   NOP
                              ; Ignored (Figure 10-2)
   NOP
                              ; Ignored (Figure 10-2)
   MOVF
            PMDATL,W
                              ; Get LSB of word
   MOVWF
            PROG_DATA_LO
                             ; Store in user location
                             ; Get MSB of word
            PMDATH,W
   MOVF
   MOVWF
            PROG_DATA_HI
                             ; Store in user location
```


© 2016 Microchip Technology Inc.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xx	XXPPS: PERIPHERAL XXX INPUT SELECTION
-------------------	---------------------------------------

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u				
-	—	—		xxxPPS<4:0>							
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is und	hanged	x = Bit is unk	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared								
bit 7-5	Unimpleme	nted: Read as '	0'								
bit 4-3		xxxPPS<4:3>: Peripheral xxx Input PORT Selection bits									
	±±	11 = Reserved. Do not use.									
		10 = Peripheral input is PORTC 01 = Peripheral input is PORTB ⁽²⁾									
	00 = Peripheral input is PORTA										
bit 2-0	xxxPPS<2:0)>: Peripheral x	xx Input Bit Se	election bits (1)							
	•	neral input is fro		. ,							
		110 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5)									
	100 = Peripi										
	011 = Periph	011 = Peripheral input is from PORTx Bit 3 (Rx3)									
		neral input is fro									
		neral input is fro neral input is fro									
	000 = Perpr	ierai input is fro		U (KXU)							

Note 1: See Table 12-1 for xxxPPS register list and Reset values.2: PIC16(L)F1578/9 only.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
— — — RxyPPS<4:0>									
bit 7 bit 0									
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 12-2 for the selection codes

'0' = Bit is cleared

1' = Bit is set

Peripheral	Conditions	Description				
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.				
	BOREN<1:0> = 11	BOR always enabled.				
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.				
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.				
LDO	All PIC16F1574/5/8/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.				

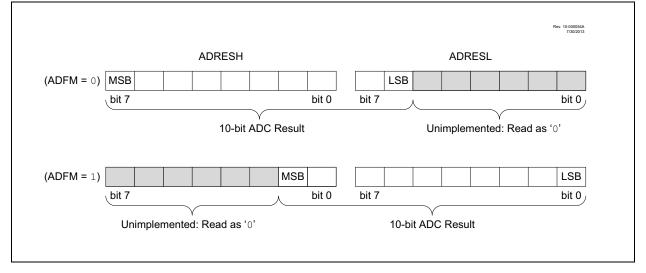
TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

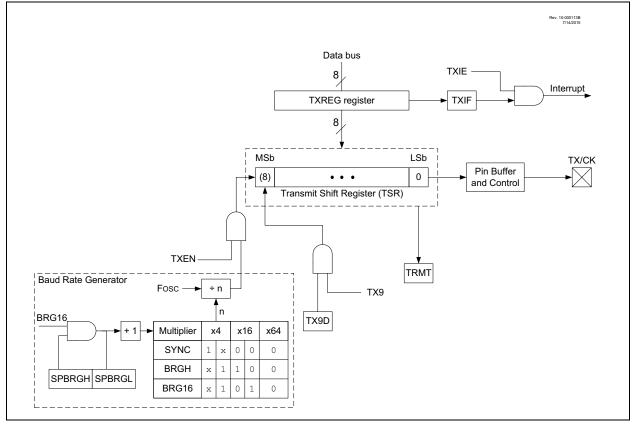
The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 22-1 and Figure 22-2.

FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	Register on Page
ANSELA	_	_	-	ANSA4	—	ANSA2 ANSA1		ANSA0	121
CWG1CON0	G1EN	_	_	G1POLB	G1POLA			G1CS0	253
CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	—	- G1IS<2:0>			254
CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1 G1ASDSPPS		_	255
CWG1DBF	_	_		CWG1DBF<5:0>					
CWG1DBR	_	_			CW	256			
TRISA		—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	120

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG. **Note 1:** Unimplemented, read as '1'.

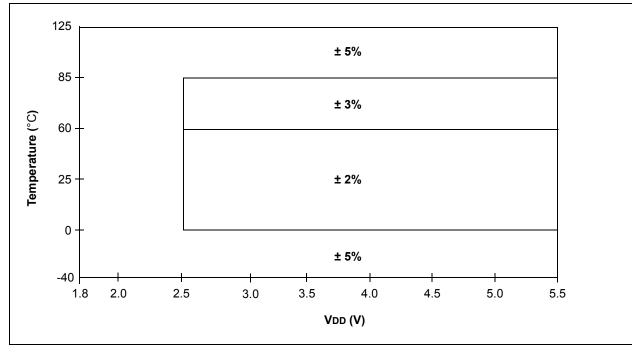
FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS

13	8 7	6		0
OPCODE	d		f (FILE #)	
d = 0 for de d = 1 for de f = 7-bit file	stination f			
Bit-oriented file	register o _l 10 9	peration 7 6		0
OPCODE		IT #)	, f (FILE #)	-
b = 3-bit bit f = 7-bit file		dress		
Literal and conti	ol operati	ons		
General				
13	8	7		0
OPCODE			k (literal)	
k = 8-bit imr	nediate va	lue		
CALL and GOTO ir	nstructions	only		
<u>13 11</u>		,		0
OPCODE		k (lit	eral)	
k = 11-bit im	imediate va	alue		
	only			
MOVLP instruction 13	Only	76		0
OPCODE			k (literal)	
k = 7-bit imr	nediate val	ue		
MOVLB instruction	only	F	4	0
13 OPCODE		5	4 k (literal)	0
k = 5-bit imr	nediate val		(,
K – 5-bit IIII		ue		
BRA instruction or	•	D		0
BRA instruction or 13 OPCODE	9 8	8	k (literal)	0
13 OPCODE	9		k (literal)	0
13	9		k (literal)	0
13 OPCODE k = 9-bit imi	9 8	lue		0
13 OPCODE k = 9-bit imi FSR Offset instru 13	9 8	lue 6 5		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE	9 a mediate va	lue		0
13 OPCODE k = 9-bit imi FSR Offset instru 13	9 a mediate va inctions 7 riate FSR	lue 65 n		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropr	9 a mediate va actions 7 riate FSR mediate va	lue 65 n		0
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropri k = 6-bit imi	9 a mediate va actions 7 riate FSR mediate va	lue 65 n	k (literal)	0)
13 OPCODE k = 9-bit imi FSR Offset instru 13 OPCODE n = appropri k = 6-bit imi FSR Increment in 13	9 a mediate va ictions 7 riate FSR mediate va structions riate FSR	lue 65 n	k (literal)	0)
13 OPCODE k = 9-bit imit FSR Offset instru 13 OPCODE n = approprise k = 6-bit imit FSR Increment init 13 OPCODE n = approprise	9 a mediate va ictions 7 riate FSR mediate va structions riate FSR	lue 65 n	k (literal)	0)

*

TABLE 27-8: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions		
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%	—	16.0	—	MHz	VDD = 3.0V, TA = 25°C, (Note 2)		
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz			
OS10*	Twarm	HFINTOSC Wake-up from Sleep Start-up Time	—	—	5	15	μS			
		LFINTOSC Wake-up from Sleep Start-up Time	—	_	0.5	—	ms			


These parameters are characterized but not tested.

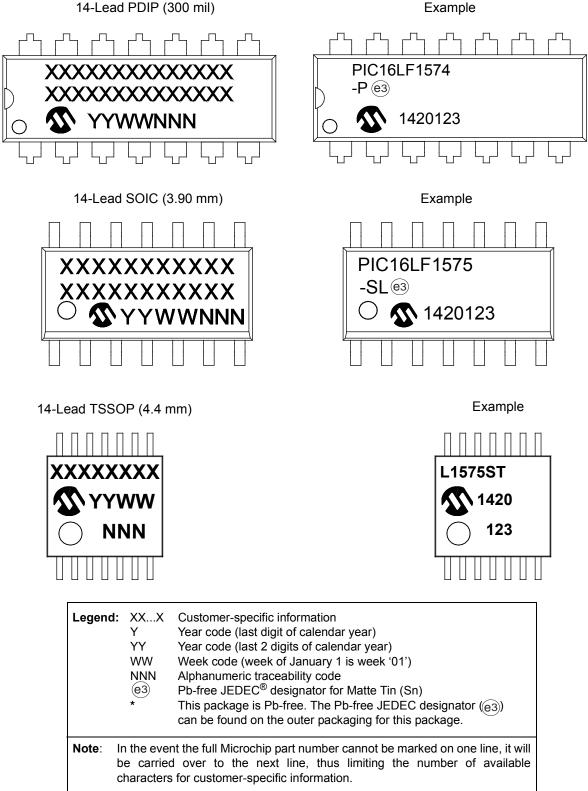
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 27-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature.

FIGURE 27-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	—	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

30.0 PACKAGING INFORMATION

30.1 **Package Marking Information**

14-Lead PDIP (300 mil)

