

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1578t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

PIC16(L)F1574/5/8/9

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

FIGURE 2-1: CORE BLOCK DIAGRAM

- Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

TABLE 3-3: PIC16(L)F1574 MEMORY MAP, BANKS 0-7

	BANK0		BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h		080h		100h		180h		200h		280h		300h		380h	
	(Table 3-2)		(Table 3-2)		(Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh	(08Bh	(10Bh	(18Bh	(10000 0 _)	20Bh	(28Bh	(1000000)	30Bh	(12210 0 2)	38Bh	(10000 0 _)
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	_	08Dh	_	10Dh	_	18Dh	_	20Dh	_	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	_	10Fh	_	18Fh	_	20Fh	_	28Fh	—	30Fh	_	38Fh	_
010h	_	090h	_	110h	_	190h	_	210h	_	290h	—	310h	_	390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	—	293h	_	313h	_	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	—	294h	_	314h	_	394h	—
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	—	295h	—	315h	—	395h	_
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h	_	396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	—	298h	_	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	—	39Ch	_
01Dh	_	09Dh	ADCON0	11Dh	_	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	_
01Eh	—	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	_	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General	3A0h	
													Purpose		
	General		General		General		General		General		General	20 5 6	16 Bytes		
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose	32F11	TO Dytes		Unimplemented
	Register		Register		Register		Register		Register		Register	330n	Unimplemented		Read as '0'
	ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		Read as '0'		
												005		0551	
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		u⊢un	A0000005	170n	A0000005	TEUN	A	270h	A0000000	∠⊢uh	A 0000000	370h	A0000000	3⊢0n	A
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Eb		OFEN	/ // //	17Eb	/ // // //	1EEb	7.511 7111	27Eb		2EEb		37Eb	/ // //	3EEb	/ // //
0750		UFFI		1750		1640		21511		2621		37 FI		SEEU	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1574.

PIC16(L)F1574/5/8/9

7.6 Register Definitions: Interrupt Control

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 GIE⁽¹⁾ PEIE⁽²⁾ IOCIF⁽³⁾ INTF TMR0IE INTE IOCIE TMR0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown '0' = Bit is cleared '1' = Bit is set GIE: Global Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit⁽²⁾ 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts TMR0IE: Timer0 Overflow Interrupt Enable bit bit 5 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt **INTE:** INT External Interrupt Enable bit bit 4 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change TMR0IF: Timer0 Overflow Interrupt Flag bit bit 2 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur IOCIF: Interrupt-on-Change Interrupt Flag bit⁽³⁾ bit 0 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

- enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
 - 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.
 - **3:** The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software.

9.6 Register Definitions: Watchdog Control

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_				WDTPS<4:0	>		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5-1	WDTPS<4:0	: Watchdog Tir	mer Period Se	elect bits ⁽¹⁾			
	Bit Value = F	Prescale Rate					
	11111 = Re	served. Results	s in minimum	interval (1:32)			
	•						
	•						
	10011 = Re	served. Results	s in minimum	interval (1:32)			
		22					
	10010 = 1:8	3388608 (2 ²³) (I	nterval 256s	nominal)			
	10001 = 1:4	194304 (2 ²²) (1	nterval 128s	nominal)			
	10000 = 1.2	2097 152 (2) (1 1048576 (2 ²⁰) (1	nterval 32s n	ominal)			
	01111 = 1.1 01110 = 1.5	524288 (2 ¹⁹) (In	terval 16s no	minal)			
	01101 = 1:2	262144 (2 ¹⁸) (In	terval 8s non	ninal)			
	01100 = 1:1	131072 (2 ¹⁷) (In	terval 4s non	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal) (, Reset value)			
	01010 = 1:3	32768 (Interval	1s nominal)	· · · · · ·			
	01001 = 1:1	6384 (Interval	512 ms nomir	nal)			
	01000 = 1:8	3192 (Interval 2	56 ms nomina	al)			
	00111 = 1:4	1096 (Interval 12	28 ms nomina	al)			
	00110 = 1:2	2048 (Interval 64	4 ms nominal)			
	00101 = 1:1	024 (Interval 3	2 ms nominal)			
	00100 = 1:5	512 (Interval 16	ms nominal)				
	00011 = 1:2	256 (Interval 8 n	ns nominal)				
	00010 = 1:1	28 (Interval 4 n	ns nominal)				
	00001 = 1:6	64 (Interval 2 m	s nominal)				
	00000 = 1.3						
DIT U	SWDIEN: SO	offware Enable/	Disable for W	atchdog Timer	DI		
	This bit is ign	$2 = 1 \times 1$					
		> = 01					
	1 = WDT is t	urned on					
	0 = WDT is t	urned off					
	If WDTE<1:0	> = 00:					
	This bit is ign	ored.					

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

© 2016 Microchip Technology Inc.

REGISTER 11-20:	ANSELC: PORTC ANALOG SELECT REGISTER
-----------------	--------------------------------------

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0				
bit 7				•		•	bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is se	et	'0' = Bit is clea	ared								
bit 7-6	bit 7-6 ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ^(1, 2) 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input Pin is assigned as analog input ⁽¹⁾ Digital input buffer disabled										
bit 5-4	Unimplemen	ted: Read as '	0'								
bit 3-0	 ansc<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 										
Note 1: V	/hen setting a pir	n to an analog i	nput, the corre	esponding TRIS	S bit must be se	et to Input mod	e in order to				

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

ADC Clock	Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0	20 MHz 16 MHz 8 MHz		8 MHz	4 MHz	1 MHz				
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs				
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs				
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs				
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs				
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs				
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs				
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs				

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACxCON1 register.

The DAC output voltage can be determined by using Equation 17-1.

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 27-16.

17.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DACxOUTn) is not intended to drive an external load.

17.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

17.5 Effects of a Reset

A device Reset affects the following:

- DACx is disabled.
- DACx output voltage is removed from the DACxOUTn pin(s).
- The DACR<4:0> range select bits are cleared.

EQUATION 17-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

$$DACx_output = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE-$$

Note: See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.

19.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 3-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

TMR0CS

TMR0 can be used to gate Timer1

Figure 19-1 is a block diagram of the Timer0 module.

19.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

19.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 19-1: TIMER0 BLOCK DIAGRAM

19.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

Rev. 10-000017A 8/5/2013

TABLE 20-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	-	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	70
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	91
TMR1H	Holding Regis	ster for the Mo	st Significant	Byte of the 16	6-bit TMR1 Co	unt			183*
TMR1L	Holding Regis	ster for the Lea	ast Significant	Byte of the 1	6-bit TMR1 Co	ount			183*
TRISA	—	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	120
T1CON	TMR1CS<1:0> T1CKPS<1:0> — T1SYNC				T1SYNC		TMR10N	186	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	187	

Legend:

* Page provides register information. Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1575 only.

22.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 22-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

22.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 22-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

22.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

22.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

22.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 22.5.1.2 "Clock Polarity**".

22.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

23.0 16-BIT PULSE-WIDTH MODULATION (PWM) MODULE

The Pulse-Width Modulation (PWM) module generates a pulse width modulated signal determined by the phase, duty cycle, period, and offset event counts that are contained in the following registers:

- PWMxPH register
- PWMxDC register
- PWMxPR register
- PWMxOF register

Figure 23-1 shows a simplified block diagram of the PWM operation.

Each PWM module has four modes of operation:

- Standard
- · Set On Match
- Toggle On Match
- · Center-Aligned

For a more detailed description of each PWM mode, refer to **Section 23.2** "**PWM Modes**".

Each PWM module has four offset modes:

- Independent Run
- · Slave Run with Synchronous Start
- · One-Shot Slave with Synchronous Start
- Continuous Run Slave with Synchronous Start and Timer Reset

Using the offset modes, each PWM module can offset its waveform relative to any other PWM module in the same device. For a more detailed description of the offset modes refer to **Section 23.3 "Offset Modes"**.

Every PWM module has a configurable reload operation to ensure all event count buffers change at the end of a period thereby avoiding signal glitches. Figure 23-2 shows a simplified block diagram of the reload operation. For a more detailed description of the reload operation, refer to Section **Section 23.4 "Reload Operation"**.

FIGURE 23-1: 16-BIT PWM BLOCK DIAGRAM

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0				
_		PS<2:0>			_	CS<	:1:0>				
bit 7	·			·			bit 0				
r											
Legend:											
R = Readab	le bit	W = Writable b	it	U = Unimpleme	ented bit, read a	s '0'					
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	Value at all other	Resets				
'1' = Bit is se	et	'0' = Bit is clear	red								
bit 7	Unimplemented: Read as '0'										
bit 6-4	bit 6-4 PS<2:0>: Clock Source Prescaler Select bits 111 = Divide clock source by 128 110 = Divide clock source by 64 101 = Divide clock source by 32 100 = Divide clock source by 16 011 = Divide clock source by 8 010 = Divide clock source by 4 001 = Divide clock source by 2 000 = No Prescaler										
bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 11 = Reserve 10 = LFINTC 01 = HFINTC 00 = FOSC	ted: Read as '0' ock Source Select ed DSC (continues to DSC (continues to	bits operate during operate during	Sleep) J Sleep)							

REGISTER 23-4: PWMxCLKCON: PWM CLOCK CONTROL REGISTER

REGISTER 23-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			PR<	15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **PR<15:8>**: PWM Period High bits Upper eight bits of PWM period count

REGISTER 23-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
PR<7:0>											
bit 7 bit 0											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PR<7:0>**: PWM Period Low bits Lower eight bits of PWM period count

PIC16(L)F1574/5/8/9

ΜΟνωι	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$ \begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ -32 \leq k \leq 31 \end{array} $
Operation:	$\label{eq:W} \begin{split} & W \rightarrow INDFn \\ & \text{Effective address is determined by} \\ & \text{FSR} + 1 (\text{preincrement}) \\ & \text{FSR} + 1 (\text{predecrement}) \\ & \text{FSR} + k (\text{relative offset}) \\ & \text{After the Move, the FSR value will be} \\ & \text{either:} \\ & \text{FSR} + 1 (\text{all increments}) \\ & \text{FSR} - 1 (\text{all decrements}) \\ & \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.

RESET	Software Reset
Syntax:	[<i>label</i>] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

FIGURE 28-19: Ipd Base, Low-Power Sleep Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-20: Ipd Base, Low-Power Sleep Mode (VREGPM = 1), PIC16F1574/5/8/9 Only.

FIGURE 28-21: Ipd, Watchdog Timer (WDT), PIC16LF1574/5/8/9 Only.

Max

Reference (FVR), PIC16LF1574/5/8/9 Only.

Typical

VDD (V)

35

30

25

15

10

5

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

FIGURE 28-23:

<u>ک</u> 20

8

Max: 85°C + 3σ Typical: 25°C

FIGURE 28-22: Ipd, Watchdog Timer (WDT), PIC16F1574/5/8/9 Only.

FIGURE 28-24: Ipd, Fixed Voltage Reference (FVR), PIC16F1574/5/8/9 Only.

5.0

5.5

6.0

PIC16(L)F1574/5/8/9

FIGURE 28-61: Comparator Input at 25°C, Normal Power Mode, (CxSP = 1).

FIGURE 28-62: Sleep Mode, Wake Period with HFINTOSC Source, LF Devices Only.

FIGURE 28-63: Low-Power Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 1, F Devices Only.

FIGURE 28-65: Temperature Indicator Initial Offset, High Range, Temp = 20°C, F Devices Only.

FIGURE 28-64: Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 0, F Devices Only.

FIGURE 28-66: Temperature Indicator Initial Offset, Low Range, Temp = 20°C, F Devices Only.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- · Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- · Built-in support for Bugzilla issue tracker