

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW ;	Add Index in W to
;	program counter to
;	select data
RETLW DATA0 ;	Index0 data
RETLW DATA1 ;	Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IND	EX
call constants	
; THE CONSTANT IS I	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constant	S				
DW	DATA0	;First constant			
DW	DATA1	;Second constant			
DW	DATA2				
DW	DATA3				
my_funct	ion				
; LOT	S OF CODE				
MOVLW	DATA_INDEX				
ADDLW	LOW constants	3			
MOVWF	FSR1L				
MOVLW	HIGH constant	s;MSb is set			
		automatically			
MOVWF	FSR1H				
BTFSC	STATUS, C	;carry from ADDLW?			
INCF	FSR1H,f	;yes			
MOVIW 0[FSR1]					
;THE PRO	GRAM MEMORY IS	IN W			

TABLE 3-6: PIC16(L)F1579 MEMORY MAP, BANKS 0-7

000h Core Registers (Table 3-2) 080h Core Registers (Table 3-2) 100h Core Registers (Table 3-2) 180h Core Registers (Table 3-2) 200h Core Registers (Table 3-2) 300h Subscription (Table 3-2) Subscription (Table 3-2) Subscription (Table 3-2) Subscrint (Table 3-2) <t< th=""><th>3ANK7</th></t<>	3ANK7
Core Registers (Table 3-2)Core Registers (Table 3-2)Co	
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh 00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONB 38Dh 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110H - 190h - 210h - 290h - 310h	e Registers
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh 00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONB 38Dh 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 30Fh - 38Fh 010h - 090h - 110h	able 3-2)
OOCh PORTA OBCh TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONA 38Ch 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h -	
OODA PORTB OBDA TRISB 10DA LATB 18DA ANSELB 20DA WPOB 28DA ODCONB 30DA SLRCONB 38DA 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
OOEn PORTC OBEN TRSC 10En LATC 18En ANSELC 20En WPUC 28En ODCONC 30En SLRCONC 38En 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
O0Fh O0Fh 10Fh 18Fh 20Fh 28Fh 30Fh 38Fh 010h 090h 110h 190h 210h 290h 310h 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h 291h 311h 391h	INLVLC
010n - 090n - 110n - 190n - 210n - 290n - 310n - 390n 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
011n PIR1 091n PIE1 111n CM1CON0 191n PMADRL 211n — 291n — 311n — 391n 391n	
0120 PIRZ 0920 PIEZ 1120 CM1C0N1 1920 PMADRH 2120 - 2920 - 3120 - 3920	
013h PIR3 093h PIE3 113h CM2CON0 193h PMDAIL 213h — 293h — 313h — 393h	IOCAF
014h — 094h — 114h CM2C0N1 194h PMDA1H 214h — 294h — 314h — 394h	
0150 TMRU 0950 OPTION_REG 1150 CMOUT 1950 PMCON1 2150 - 2950 - 3150 - 3950	
0160 IMR1L 0960 PCON 1160 BORCON 1960 PMCON2 2160 — 2960 — 3160 — 3960	IOCBE
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON ⁽¹⁾ 217h — 297h — 317h — 397h	IOCCP
018h <u>T1CON</u> 098h <u>OSCTUNE</u> 118h <u>DACCON0</u> 198h <u>—</u> 218h <u>—</u> 298h <u>—</u> 318h <u>—</u> 398h <u>—</u> 38h <u>—</u> 38h <u>—</u> 38h <u>—</u> 38h <u>—</u>	IOCCN
019h <u>T1GCON</u> 099h <u>OSCCON</u> 119h <u>DACCON1</u> 199h <u>RCREG</u> 219h <u> </u> 299h <u> </u> 319h <u> </u> 399h	IOCCF
01Ah <u>TMR2</u> 09Ah <u>OSCSTAT</u> 11Ah <u> </u>	
01Bh PR2 09Bh ADRESL 11Bh — 19Bh SPBRGL 21Bh — 29Bh — 31Bh — 39Bh _ 39Bh	
01Ch <u>T2CON</u> 09Ch <u>ADRESH</u> 11Ch <u> </u>	_
01Dh 09Dh ADCON0 11Dh 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh	
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh 29Eh 31Eh 39Eh	
01Fh 09Fh ADCON2 11Fh 19Fh BAUDCON 21Fh 29Fh 31Fh 39Fh	—
020h 0A0h 120h 1A0h 220h 2A0h 320h 3A0h	
General General General General General General General	General
Purpose Purpose Purpose Purpose Purpose Purpose Purpose	Purpose
Register R	Register
of Bytes of Bytes of Bytes of Bytes of Bytes	Jo Dytes
06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh 3EFh	
	10000000
Common RAM Accesses A	0h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1579.

TABLE 3-10: PIC16(L)F1574/5/8/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers	C80h	Core Registers	D00h	Core Registers	D80h	Core Registers	E00h	Core Registers	E80h	Core Registers	F00h	Core Registers	F80h	Core Registers
C0Bh	(Table 3-2)	C8Bh	(Table 3-2)	D0Bh	(Table 3-2)	D8Bh	(Table 3-2)	E0Bh	(Table 3-2)	E8Bh	(Table 3-2)	F0Bh	(Table 3-2)	F8Bh	(Table 3-2)
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch		E0Ch		E8Ch		F0Ch	—	F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—							F0Dh	_		
C0Eh	—	C8Eh	—	D0Eh	_							F0Eh			
C0Fh	_	C8Fh	_	D0Fh	—							F0Fh	—		
C10h	_	C90h	_	D10h	—							F10h	—		
C11h	—	C91h	—	D11h	—							F11h	—		
C12h	—	C92h	—	D12h	—							F12h	—		
C13h	—	C93h	—	D13h	—							F13h	—		
C14h	—	C94h	—	D14h	—							F14h	—		
C15h	—	C95h	—	D15h	—							F15h			
C16h	—	C96h	—	D16h	—						F16h	_			
C17h		C97h	_	D17h	_						F17h				
C18h	—	C98h	—	D18h	—		See Table 3-11		See Table 3-12		See Table 3-12	F18h			See Table 3-13
C19h	_	C99h	_	D19h	_							F19h			
C1Ah	—	C9Ah	—	D1Ah	—							F1Ah	_		
C1Bh	—	C9Bh	—	D1Bh	—							F1Bh	_		
C1Ch	—	C9Ch	—	D1Ch	—							F1Ch	—		
C1Dh	_	C9Dh		D1Dh								F1Dh			
		C9En	_		_							FIEN			
C20h	_	C9Fn	_	D1Fn D20h	_							F1FN F20h			
02011		0/1011		DZOII								1 2011			
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'								Unimplemented Read as '0'		
C6Fh		CEEh		D6Fh		DEEh		E6Eh		FFFh		F6Fh		FFFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'

3.5 Stack

FIGURE 3-5:

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-5 through 3-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

ACCESSING THE STACK EXAMPLE 1

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

	Rev. 10-00043A 7/502013
TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0E	N
0x0D	
0x0C	
0x0B	Initial Stack Configuration:
0x0A	
0x09	After Reset, the stack is empty. The
0x08	Pointer is pointing at 0x1F. If the Stack
0x07	Overflow/Underflow Reset is enabled, the
0x06	Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL register will
0x04	0x0F.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F (STVREN = 1)
``	\mathbb{N}

© 2016 Microchip Technology Inc.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8** "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT) and Watchdog Timer (WDT).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 FRC

The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source.

The FRC is automatically turned on by the peripherals requesting the FRC clock.

The FRC clock will continue to run during Sleep.

5.2.2.6 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits, IRCF<3:0> of the OSCCON register.

The postscaler outputs of the 16 MHz HFINTOSC, **500 kHz MFINTOSC**, and **31 kHz** LFINTOSC output connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

PIC16(L)F1574/5/8/9

FIGURE 5-3:	INTERNAL OSCILLATOR SWITCH TIMING
HPN/TOBC/ MPN/TOBC/	
HFINTOSC/	Craviliana Onlay ⁽⁹⁾ 2 cycle Syre. Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
SSINTOSC/	LENYXXXX (WET enabled)
HFINTOSC/ MENNECOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
SINTORC	HFINYOSC/NFINYOSC URINTOSO hims off unless WOT is enabled
1989090	
HFRATOSO/ SAFINTOSO	
System Clock	
Note () See	Table 5-1, "Craditutor Switching Dalays" for more information.

11.3 PORTB Registers (PIC16(L)F1578/9 only)

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.3.1 DIRECTION CONTROL

The TRISB register (Register 11-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.3.2 OPEN-DRAIN CONTROL

The ODCONB register (Register 11-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.3.3 SLEW RATE CONTROL

The SLRCONB register (Register 11-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.3.4 INPUT THRESHOLD CONTROL

The INLVLB register (Register 11-16) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.3.5 ANALOG CONTROL

The ANSELB register (Register 11-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

11.3.6 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information. Analog input functions, such as ADC and op amp inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions may continue to control the pin when it is in Analog mode.

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	
RB7	RB6	RB5	RB4	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared			red					
bit 7-4	bit 7-4 RB<7:4> : PORTB General Purpose I/O Pin bits ⁽¹⁾							
$1 = Port pin is \ge VIH$								
	$0 = Port pin is \leq Vil$							
h:+ 0 0		ad Deed ee 'o'						

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB Tri-State Control bits
	1 = PORTB pin configured as an input (tri-stated)
	0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATB<7:4>: PORTB Output Latch Value bits⁽¹⁾

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0			
bit 7 bit										
Legend:										
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cleare	ed							

REGISTER 11-22: ODCONC: PORTC OPEN DRAIN CONTROL REGISTER

bit 7-0

ODC<7:0>: PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0				
bit 7 bit 0											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits⁽¹⁾ For RC<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

Note 1: SLRC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits⁽¹⁾

For RC<7:0> pins, respectively

1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

Note 1: INLVLC<7:6> are available on PIC16(L)F1578/9 only.

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC. The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- · Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined										
	as a digital input may cause the input										
	buffer to conduct excess current.										

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<7:0> pins (PIC16(L)F1574/5 only)
- AN<11:0> pins (PIC16(L)F1578/9 only)
- Temperature Indicator
- DAC1_output
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 16.2.6 "ADC Conversion Procedure"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd
- FVR_buffer1

The negative voltage reference (ref-) source is:

Vss

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 27.0 "Electrical Specifications"** for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

21.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- · Interrupt on TMR2 match with PR2

See Figure 21-1 for a block diagram of Timer2.

FIGURE 21-2: TIMER2 TIMING DIAGRAM

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 22-1 and Figure 22-2.

FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM

					SYNC	C = 0, BRG	l = 1, BRC	G16 = 0				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Foso	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	_			_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—		—	57.60k	0.00	3	—	_	—
115.2k	—	—	—	—	—	_	115.2k	0.00	1	_	_	_

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	-0.01	4166	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303	
1200	1200	-0.03	1041	1200	0.00	959	1200.5	0.04	832	1200	0.00	575	
2400	2399	-0.03	520	2400	0.00	479	2398	-0.08	416	2400	0.00	287	
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71	
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35	
57.6k	56.818	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11	
115.2k	113.636	-1.36	10	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5	

					SYNC	C = 0, BRGH	H = 0, BRC	G16 = 1					
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	—	_	—	_	—	115.2k	0.00	1	—	—	—	

FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

		0.000.00	(0402040	0040040404	io (0010806	04	020304)enteziente	54,08(02)O	903	josionijos	4. X.	je (octoslov)	e (0.80.	3021
0	aoa	pununun.	pununun.	.mmmm.	1	nununu		aunun.	nunur	upunun.	J. W	punun.	n.,	nununu;	nunun.	in an
	,	ન - 1313 કલ્પરે ઉત્પુર્વ	1970:					·	•	i.	3	, (į.		Oleorad -	
86	8:58	,	· · · · · · · · · · · · · · · · · · · ·	di 1			,		, , ,							······
RXOF.	1999	, ,	,	······		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mi	: [[]]]		, ,,			ina fa C			
	8039	;	:			; ;		, N				, ,	; ;;	; ;		
2					inne. V	;; ;				ीकृत्यक्षतं त्यय	8363	Jaar Reed		90383-0)	······
	UI.				/////	///////////////////////////////////////	9111.						11111			[[]]]][[]
8668	8 21	162308480	(((()))) (()) ())	498 WORE 949 V	83.23	: 63 :5 965										

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	X	e şeştetçe (erşetşe	::::::::::::::::::::::::::::::::::::::	201902	01	<u>}</u> 2;	abako-pader	808030808	33686	246030364	0402/030	34)
0	80 (j	www.www.		ununu;			unununu	a upupunua	WW.	unununu.	fununun.	m,
	, i	- BR Sec by Week	ng i	1					1.1	AND (AND)	. Cieszad	ż
- 523	888			······					1 3		· · · · · · · · · · · · · · · · · · · ·	
Service Service		· · · · · · · · · · · · · · · · · · ·										
34/4073	100000			4 4		Sayaanaa.			llit (sky	18-1		5 5
:	aria t	*		4							4.,	3
		Sincy Con	ovacić Eze	cuied	Steep	Ends (Cleared	dus to Geer Re	60 69 	360388763*	<u>,</u>	····>

Auto 3: If the wake-up event requires long confluence warm-up fore, the reconstitute bearing of the VrUit bit can constructed the organic signal is all antive. This requestes should not denote an the presence of Q circles.

 $\Omega^{*}_{\rm c}$. The 2004-ABTE measure is idea where the Velot hit is and

FIGURE 23-4:

STANDARD PWM MODE TIMING DIAGRAM

PIC16(L)F1574/5/8/9

FIGURE 23-12: OFFSET MATCH ON INCREMENTING TIMER TIMING DIAGRAM

PIC16(L)F1574/5/8/9

Mnemonic, Operands		Descrir	ation (Cycles		14-Bit	Opcode	Status	Notes		
		Description		Sycles	MSb		LSb		Affected	NOLES	
	BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1		00	0111	dfff	ffff	C, DC, Z	2	
ADDWFC	f, d	Add with Carry W and f	1		11	1101	dfff	ffff	C, DC, Z	2	
ANDWF	f, d	AND W with f	1		00	0101	dfff	ffff	Z	2	
ASRF	f, d	Arithmetic Right Shift	1		11	0111	dfff	ffff	C, Z	2	
LSLF	f, d	Logical Left Shift	1		11	0101	dfff	ffff	C, Z	2	
LSRF	f, d	Logical Right Shift	1		11	0110	dfff	ffff	C, Z	2	
CLRF	f	Clear f	1		00	0001	lfff	ffff	Z	2	
CLRW	_	Clear W	1		00	0001	0000	00xx	Z		
COMF	f, d	Complement f	1		00	1001	dfff	ffff	Z	2	
DECF	f, d	Decrement f	1		00	0011	dfff	ffff	Z	2	
INCF	f, d	Increment f	1		00	1010	dfff	ffff	Z	2	
IORWF	f, d	Inclusive OR W with f	1		00	0100	dfff	ffff	Z	2	
MOVF	f, d	Move f	1		00	1000	dfff	ffff	Z	2	
MOVWF	f	Move W to f	1		00	0000	1fff	ffff		2	
RLF	f, d	Rotate Left f through Car	ry 1		00	1101	dfff	ffff	С	2	
RRF	f, d	Rotate Right f through Ca	arry 1		00	1100	dfff	ffff	С	2	
SUBWF	f, d	Subtract W from f	1		00	0010	dfff	ffff	C, DC, Z	2	
SUBWFB	f, d	Subtract with Borrow W fr	rom f 1		11	1011	dfff	ffff	C, DC, Z	2	
SWAPF	f, d	Swap nibbles in f	1		00	1110	dfff	ffff		2	
XORWF	f, d	Exclusive OR W with f	1		00	0110	dfff	ffff	Z	2	
		ВҮ	TE ORIENTED SKIP OP	ERATIO	ONS						
DECEST	f. d	Decrement f. Skip if 0	1	(2)	00	1011	dfff	ffff		1.2	
INCES7	f. d	Increment f. Skip if 0	1	(2)	00	1111	dfff	ffff		1.2	
	, -	BIT OD			ATION	<u> </u>				,	
	£ h	Dit Clean f			ATION	3	1.555				
BCF	I, D f h	Bit Clear I Bit Set f	1		01	0120	DIII	LLLL		2	
BSF	I, D	Bit Set I			01	ααιυ	IIIQ	IIII		2	
	BIT-ORIENTED SKIP OPERATIONS										
BTFSC	f, b	Bit Test f, Skip if Clear	1	(2)	01	10bb	bfff	ffff		1, 2	
BTFSS	f, b	Bit Test f, Skip if Set	1	(2)	01	11bb	bfff	ffff		1, 2	
			LITERAL OPERATIO	ONS							
ADDLW	k	Add literal and W	1		11	1110	kkkk	kkkk	C, DC, Z		
ANDLW	k	AND literal with W	1		11	1001	kkkk	kkkk	Z		
IORLW	k	Inclusive OR literal with V	V 1		11	1000	kkkk	kkkk	Z		
MOVLB	k	Move literal to BSR	1		00	0000	001k	kkkk			
MOVLP	k	Move literal to PCLATH	1		11	0001	1kkk	kkkk			
MOVLW	k	Move literal to W	1		11	0000	kkkk	kkkk			
SUBLW	k	Subtract W from literal	1		11	1100	kkkk	kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with	W 1		11	1010	kkkk	kkkk	Z		

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

27.2 Standard Operating Conditions

The standard operating conditions for any device are defined as: $V \text{DDMIN} \leq V \text{DD} \leq V \text{DDMAX}$ Operating Voltage: Operating Temperature: TA MIN \leq TA \leq TA MAX VDD — Operating Supply Voltage⁽¹⁾ PIC16LF1574/5/8/9 PIC16F1574/5/8/9 TA — Operating Ambient Temperature Range Industrial Temperature TA MIN.....--40°C **Extended Temperature** Ta MIN.....--40°C

Note 1: See Parameter D001, DS Characteristics: Supply Voltage.

Package Marking Information (Continued)

16-Lead UQFN (4x4x0.5mm) Example • XXXXX XXXXXX YXXXXX YXXXX PIC16 PIN 1-PIN 1-LF1575 ML e3 410017 WNNN

Legend	: XXX Y YY WW NNN @3 *	 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC[®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package. 					
Note:	In the ever be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.					