E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	(Continued)										
DC9h	PWM4TMRL				-	TMR<7:0>				xxxx xxxx	uuuu uuuu
DCAh	PWM4TMRH				Т	MR<15:8>				xxxx xxxx	uuuu uuuu
DCBh	PWM4CON	EN	—	OUT	POL	MODE	E<1:0>	_	—	0000 00	0000 00
DCCh	PWM4INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DCDh	PWM4INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
DCEh	PWM4CLKCON	—		PS<2:0>		_	—	CS∢	<1:0>	-000 -000	-00000
DCFh	PWM4LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DD0h	PWM40FCON	—	OFM	<1:0>	OFO	_	—	OFS	<1:0>	-000 -000	-00000
DD1h to DEFh	_	Unimplemer	nimplemented						_		
Bank 28											
E0Ch											
E0Eh	-	Unimplemen	ited							—	_
E0Fh	PPSLOCK	—	—	_	—	_	_	—	PPSLOCKED	0	0
E10h	INTPPS	_	_	_		•	INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS	_	_	_			T0CKIPPS<4:0>	>		0 0010	u uuuu
E12h	T1CKIPPS	_	_	_			T1CKIPPS<4:0>	`		0 0101	u uuuu
E13h	T1GPPS	_	_	_		T1GPPS<4:0>				0 0100	u uuuu
E14h	CWG1INPPS	_	_	_	CWGINPPS<4:0>					0 0010	u uuuu
E15h	RXPPS	_	_	_						1 0101	u uuuu
E16h	CKPPS	_	_	_	CKPPS<4:0>					1 0101	u uuuu
E17h	ADCACTPPS	_	_	- ADCACTPPS<4:0>					1 0101	u uuuu	
E18h to E6Fh	_	Unimplemer	nted							—	_

TABLE 3-15: SPECIAL EUNCTION DEGISTED SUMMARY (CONTINUED)

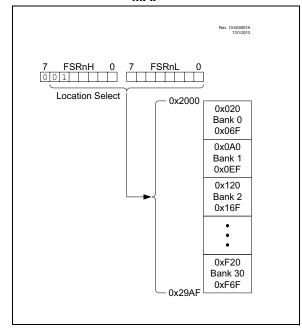
 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

DS40001782C-page 45


3.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.


FIGURE 3-11: LINEAR DATA MEMORY MAP

3.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSb of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

6.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit ($\overline{\text{BOR}}$) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR voltage threshold (VLPBOR) has a wider tolerance than the BOR (VBOR), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
х	1	Enabled

6.5.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0 "Watchdog Timer (WDT)"** for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2 "Overflow/Underflow Reset"** for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overline{\text{PWRTE}}$ bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

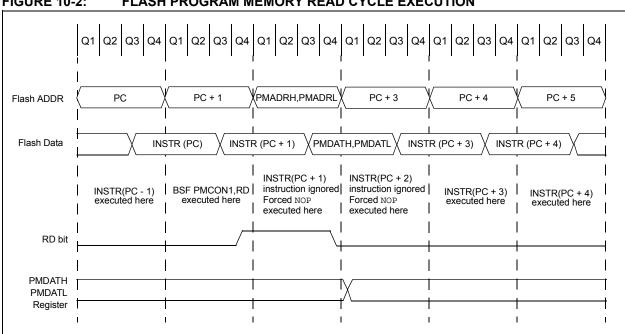
- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 FOSC cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

	D 0/0	D 0/0	D 0/0	11.0		11.0	
R-0/0	R-0/0	R-0/0	R-0/0	U-0	U-0	U-0	U-0
PWM4IF ⁽¹⁾	PWM3IF ⁽¹⁾	PWM2IF ⁽¹⁾	PWM1IF ⁽¹⁾	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	PWM4IF: PW	/M4 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt i	is pending					
	0 = Interrupt	is not pending					
bit 6	PWM3IF: PW	/M3 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 5	PWM2IF: PW	/M2 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt						
	0 = Interrupt is not pending						
bit 4	PWM1IF: PWM1 Interrupt Flag bit ⁽¹⁾						
	1 = Interrupt is pending						
	0 = Interrupt is not pending						
bit 3-0	Unimplemen	nted: Read as '	0'				
Note 1. Th	oso hits aro roa	d only Thoy m	ust be cleared	l by addragain	a the Flee regist	ora inaida tha n	aadula

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3


- Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

9.6 Register Definitions: Watchdog Control

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:0>			SWDTEN
oit 7							bit (
.egend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
ı = Bit is unc		x = Bit is unkr	nown	-n/n = Value at			other Resets
1' = Bit is set	•	'0' = Bit is clea	ared				
it 7-6	-	nted: Read as ')>: Watchdog Ti		alaat hita(1)			
oit 5-1		-	Ther Period S	elect bits, ,			
		Prescale Rate		interval (1:22)			
	11111 = R	eserved. Results		intervar (1.52)			
	•						
	•						
	10011 = R	eserved. Results	s in minimum	interval (1:32)			
	10010 = 1 :	8388608 (2 ²³) (Interval 256s	nominal)			
	10001 = 1 :	4194304 (2 ²²) (Interval 128s	nominal)			
	10000 = 1 :	2097152 (2 ²¹) (1 1048576 (2 ²⁰) (1	Interval 64s r	iominal)			
	01111 = 1 :	1048576 (2 ²⁰) (1	Interval 32s r	nominal)			
	01110 = 1:	524288 (2 ¹⁹) (In	iterval 16s no	ominal)			
		262144 (2 ¹⁸) (In 131072 (2 ¹⁷) (In					
		65536 (Interval		,			
		32768 (Interval					
		16384 (Interval		nal)			
		8192 (Interval 2					
		4096 (Interval 1					
		2048 (Interval 6					
		1024 (Interval 3		•			
		512 (Interval 16 256 (Interval 8 r					
		128 (Interval 4 r					
		64 (Interval 2 m	,				
		32 (Interval 1 m	,				
oit O	SWDTEN: S	Software Enable/	Disable for V	Vatchdog Timer bi	it		
	<u>If WDTE<1:</u> ()> = 1x:		·			
	This bit is ig	nored.					
	If WDTE<1:						
	1 = WDT is						
	0 = WDT is <u>If WDTE<1:</u> (

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL PMADRL
                             ; Select Bank for PMCON registers
            PROG_ADDR_LO
   MOVLW
                             ;
   MOVWF
            PMADRL
                             ; Store LSB of address
            PROG_ADDR_HI
   MOVLW
                              ;
   MOVWF
            PMADRH
                              ; Store MSB of address
   BCF
            PMCON1,CFGS
                             ; Do not select Configuration Space
   BSF
            PMCON1,RD
                              ; Initiate read
   NOP
                              ; Ignored (Figure 10-2)
   NOP
                              ; Ignored (Figure 10-2)
   MOVF
            PMDATL,W
                              ; Get LSB of word
   MOVWF
            PROG_DATA_LO
                             ; Store in user location
                             ; Get MSB of word
            PMDATH,W
   MOVF
   MOVWF
            PROG_DATA_HI
                             ; Store in user location
```

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾		_	ANSC3	ANSC2	ANSC1	ANSC0		
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unch	= Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6 ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ^(1, 2) 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.									
bit 5-4	5-4 Unimplemented: Read as '0'								
bit 3-0	 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 								
Note 1: Wh	lote 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to								

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

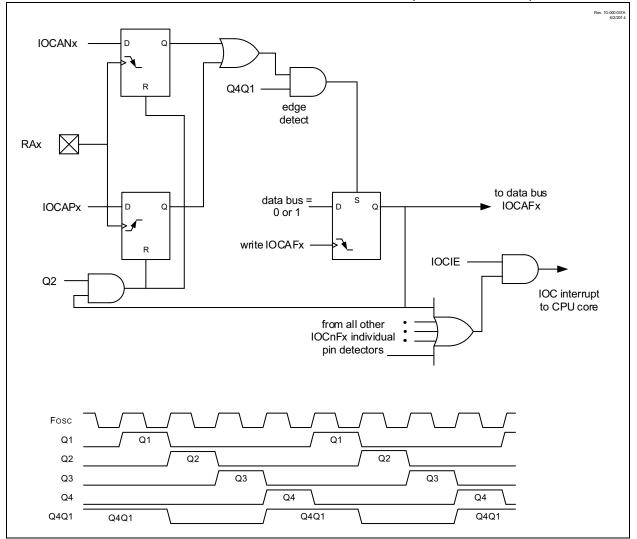
REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled


0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- · Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<7:0> pins (PIC16(L)F1574/5 only)
- AN<11:0> pins (PIC16(L)F1578/9 only)
- Temperature Indicator
- DAC1_output
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 16.2.6 "ADC Conversion Procedure"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd
- FVR_buffer1

The negative voltage reference (ref-) source is:

Vss

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 27.0 "Electrical Specifications"** for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

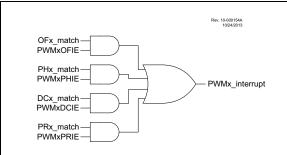
Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 AUTO-CONVERSION TRIGGER


The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. The PWM module can trigger the ADC in two ways, directly through the PWMx_OF_match or through the interrupts generated by all four match signals. See Section 23.0 "16-bit Pulse-Width Modulation (PWM) Module". If the interrupts are chosen, each enabled interrupt in PWMxINTE will trigger a conversion. Refer to Figure 16-4 for more information.

See Table 16-2 for auto-conversion sources.

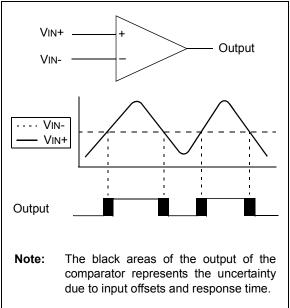


TABLE 16-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
Timer0	T0_overflow
Timer1	T1_overflow
Timer2	T2_match
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
PWM1	PWM1_OF_match
PWM1	PWM1_interrupt
PWM2	PWM2_OF_match
PWM2	PWM2_interrupt
PWM3	PWM3_OF_match
PWM3	PWM3_interrupt
PWM4	PWM4_OF_match
PWM4	PWM4_interrupt
ADC Trigger	ADCACT
CWG Input Pin	CWGIN

FIGURE 18-2: SINGLE COMPARATOR

18.2 Comparator Control

The comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- Speed/Power selection
- · Hysteresis enable
- Output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC1_output
- FVR_buffer2
- Vss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

Complementary Waveform Generator (CWG)

Note: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

REGISTER 23-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	:15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PR<15:8>**: PWM Period High bits Upper eight bits of PWM period count

REGISTER 23-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
PR<7:0>							
bit 7 bit							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PR<7:0>**: PWM Period Low bits Lower eight bits of PWM period count

24.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

24.11 Configuring the CWG

The following steps illustrate how to properly configure the CWG to ensure a synchronous start:

- 1. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs.
- 2. Clear the GxEN bit, if not already cleared.
- 3. Set desired dead-band times with the CWGxDBR and CWGxDBF registers.
- 4. Setup the following controls in CWGxCON2 auto-shutdown register:
 - · Select desired shutdown source.
 - Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASE bit and clear the GxARSEN bit.
- 5. Select the desired input source using the CWGxCON1 register.
- 6. Configure the following controls in CWGxCON0 register:
 - · Select desired clock source.
 - Select the desired output polarities.
- 7. Set the GxEN bit.
- Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs.
- If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.

24.11.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 24-3). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level.

24.11.2 AUTO-SHUTDOWN RESTART

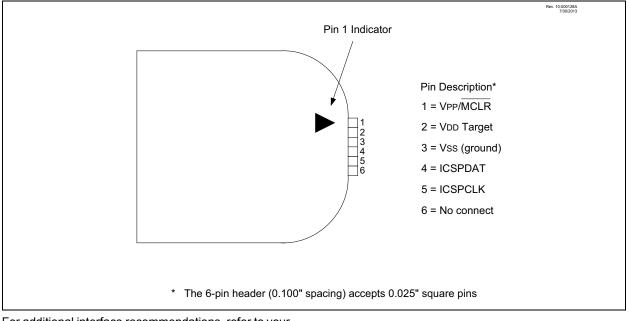
After an auto-shutdown event has occurred, there are two ways to have resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 24-5 and Figure 24-6.

24.11.2.1 Software Controlled Restart

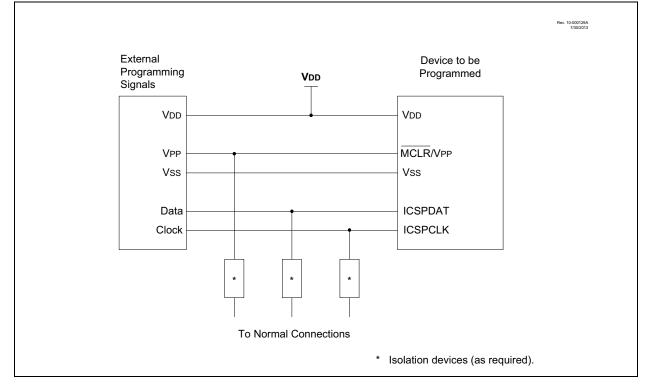
When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shut-down event by software.


Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

24.11.2.2 Auto-Restart

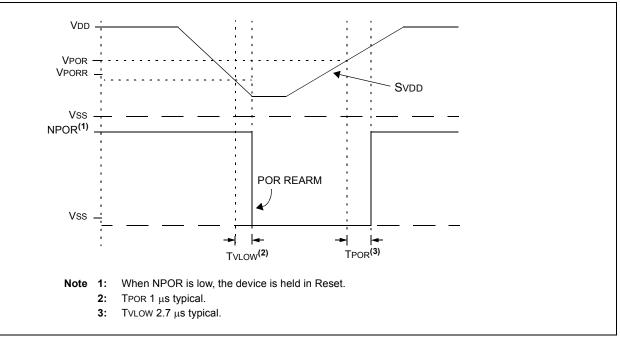
When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically.

The GxASE bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.



For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information.



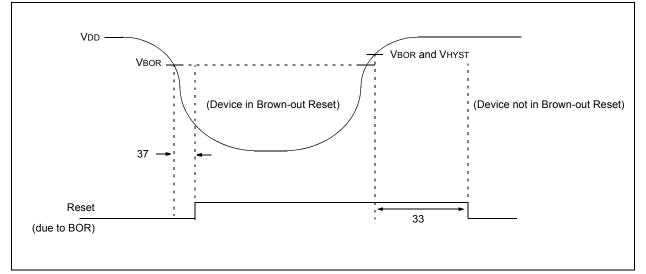
RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RETLW	Return with literal in W	RLF	Deteta Left fithrough Correc			
Syntax:	[<i>label</i>] RETLW k		Rotate Left f through Carry			
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d			
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Status Affected:	None	Operation:	See description below			
Description:	The W register is loaded with the 8-bit	Status Affected:	С			
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is			
Words:	1		stored back in register 'f'.			
Cycles:	2		C Register f			
Example:	CALL TABLE;W contains table	Words:	1			
	;offset value • ;W now has table value	Cycles:	1			
TABLE	•	Example:	RLF REG1,0			
	•		Before Instruction			
	ADDWF PC ;W = offset RETLW k1 ;Begin table		REG1 = 1110 0110			
	RETLW k2 ;		C = 0			
	•		After Instruction REG1 = 1110 0110			
	•		$\begin{array}{rcl} \text{REG1} &=& 1110 & 0110 \\ \text{W} &=& 1100 & 1100 \end{array}$			
	• RETLW kn ; End of table		C = 1			
	Before Instruction W = 0x07 After Instruction W = value of k8					

TABLE 27-11:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standa	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2	_	_	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	_	Tosc			
33*	TPWRT	Power-up Timer Period	40	65	140	ms	PWRTE = 0		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset			2.0	μS			
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0		
			2.35	2.45	2.58	V	BORV = 1		
			1.80	1.90	2.05	V	(PIC16F1574/5/8/9) BORV = 1 (PIC16LF1574/5/8/9)		
36*	VHYST	Brown-out Reset Hysteresis	0	25	60	mV	$-40^{\circ}C \le TA \le +85^{\circ}C$		
37*	TBORDC	Brown-out Reset DC Response Time	1	16	35	μS	$V \text{DD} \leq V \text{BOR}$		
38	VLPBOR	Low-Power Brown-Out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1		


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

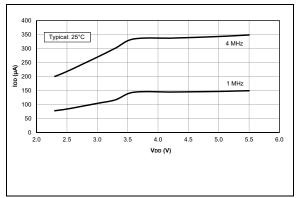


FIGURE 28-7: IDD Typical, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

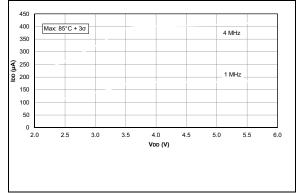
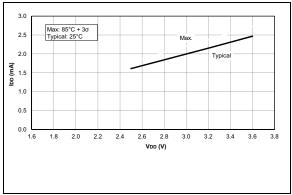
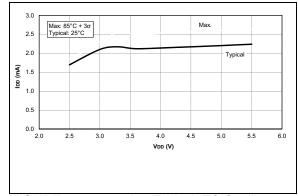




FIGURE 28-8: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-9: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-10: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

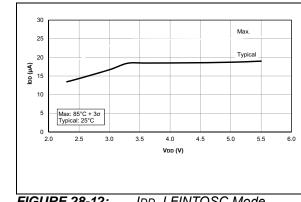


FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1574/5/8/9 Only.

12 (**V**rl) 10 8 Typical 4 2 0 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.8 1.6 VDD (V) FIGURE 28-11: IDD, LFINTOSC Mode,

Max.

Fosc = 31 kHz, PIC16LF1574/5/8/9 Only.

18

16

14

Max: 85°C + 3o Typical: 25°C

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15