Microchip Technology - PIC16F1579-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	(Continued)										
DC9h	PWM4TMRL				-	TMR<7:0>				xxxx xxxx	uuuu uuuu
DCAh	PWM4TMRH				Т	MR<15:8>				xxxx xxxx	uuuu uuuu
DCBh	PWM4CON	EN	—	OUT	POL	MODE	E<1:0>	_	—	0000 00	0000 00
DCCh	PWM4INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DCDh	PWM4INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
DCEh	PWM4CLKCON	—		PS<2:0>		_	—	CS∢	<1:0>	-000 -000	-00000
DCFh	PWM4LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DD0h	PWM40FCON	—	OFM	<1:0>	OFO	_	—	OFS	<1:0>	-000 -000	-00000
DD1h to DEFh	_	Unimplemer	nimplemented						_		
Bank 28											
E0Ch											
E0Eh	-	Unimplemen	ited							—	_
E0Fh	PPSLOCK	—	—	_	—	_	_	—	PPSLOCKED	0	0
E10h	INTPPS	_	_	_		•	INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS	_	_	_			T0CKIPPS<4:0>	>		0 0010	u uuuu
E12h	T1CKIPPS	_	_	_						0 0101	u uuuu
E13h	T1GPPS	_	_	_	T1GPPS<4:0>					0 0100	u uuuu
E14h	CWG1INPPS	_	_	— CWGINPPS<4:0>					0 0010	u uuuu	
E15h	RXPPS	_	_						1 0101	u uuuu	
E16h	CKPPS	_	_	— — CKPPS<4:0>					1 0101	u uuuu	
E17h	ADCACTPPS	_	ADCACTPPS<4:0>						1 0101	u uuuu	
E18h to E6Fh	_	Unimplemer	nimplemented						—	_	

TABLE 3-15: SPECIAL EUNCTION DEGISTED SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

DS40001782C-page 45

4.2 Register Definitions: Configuration Words

R/P-1 U-1 U-1 R/P-1 R/P-1 U-1 BOREN<1:0>(1) CLKOUTEN bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1 R/P-1** U-1 R/P-1 CP(2) PWRTE⁽¹⁾ MCLRE WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as '1' bit 11 **CLKOUTEN:** Clock Out Enable bit 1 = OFF - CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin 0 = ON - CLKOUT function is enabled on CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ - Brown-out Reset enabled. The SBOREN bit is ignored. 11 = ON 10 = SLEEP - Brown-out Reset enabled while running and disabled in Sleep. The SBOREN bit is ignored. 01 = SBODEN- Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = OFF- Brown-out Reset disabled. The SBOREN bit is ignored. bit 8 Unimplemented: Read as '1' CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = OFF – Code protection off. Program Memory can be read and written. 0 = ON - Code protection on. Program Memory cannot be read or written externally. bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (ON): This bit is ignored. MCLR/VPP pin function is MCLR; Weak pull-up enabled. If LVP bit = 0 (OFF): $1 = ON - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = OFF – MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of pin's WPU control bit. **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = OFF-PWRT disabled 0 = ON - PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit bit 4-3 - WDT enabled. SWDTEN is ignored. 11 = ON 10 = SLEEP - WDT enabled while running and disabled in Sleep. SWDTEN is ignored. 01 = SWDTEN-WDT controlled by the SWDTEN bit in the WDTCON register 00 = OFF - WDT disabled. SWDTEN is ignored. bit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 = ECM01 = ECL- External Clock, Low-Power mode: CLKI on CLKI 00 = INTOSC-I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

REGISTER 4-1: CONFIGURATION WORD 1

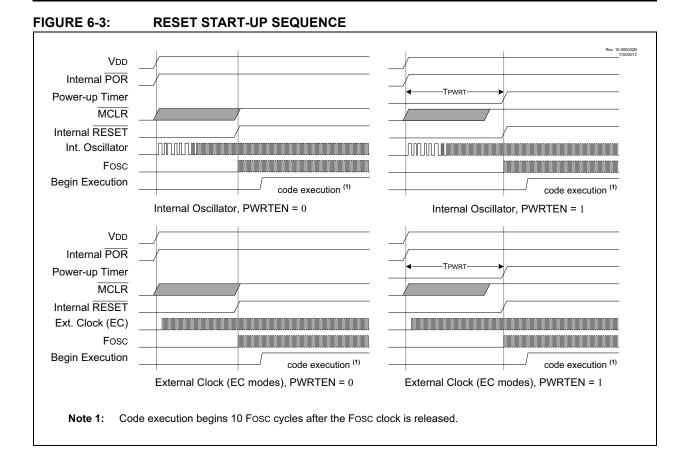
5.2.2.7 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.8 Internal Oscillator Clock Switch Timing


When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

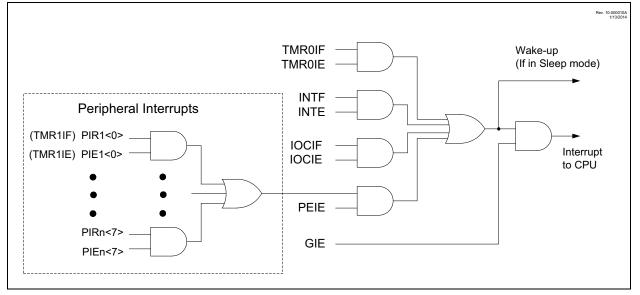
See Figure 5-3 for more details.

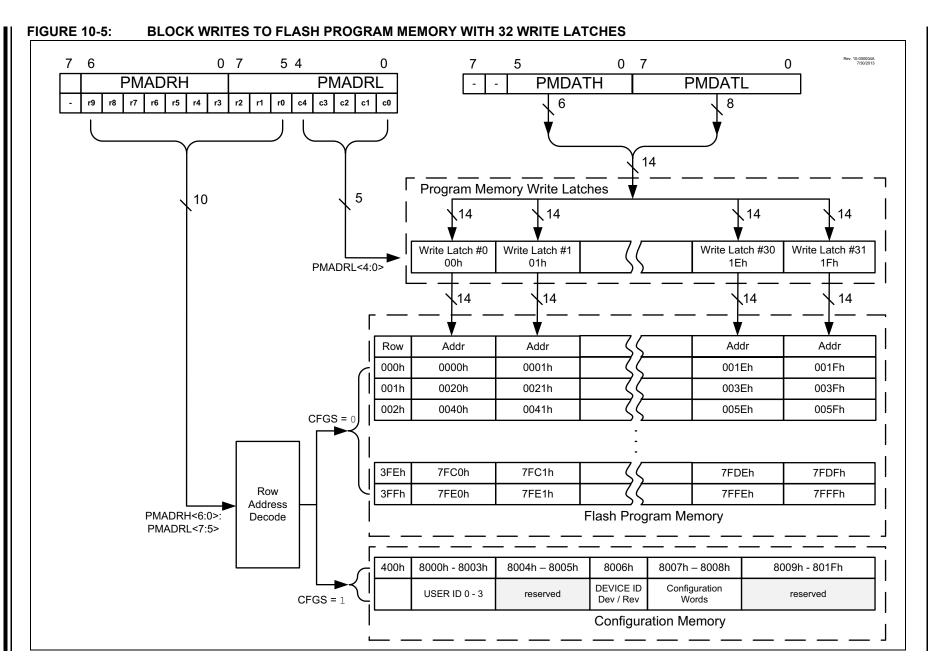
If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 27.0 "Electrical Specifications"**.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:


- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

PIC16(L)F1574/5/8/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	२<1:0>	118

Legend: Shaded cells are unused by the temperature indicator module.

17.0 **5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE**

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

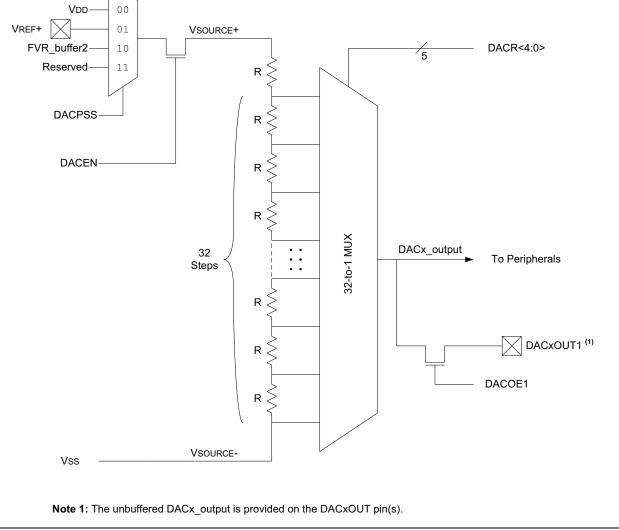
- · External VREF+ pin
- · VDD supply voltage
- FVR_buffer1

FIGURE 17-1:

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:


- · Comparator positive input
- · ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

Rev. 10-000026B 9/6/2013

VDD 00 VREF+ 01 VSOURCE+

DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

21.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/V	V-0/0	R/W-0/0		
		T2OUT	PS<3:0>		TMR2ON		T2CKP	S<1:0>		
oit 7						•		bit		
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, re	ead as '0'				
u = Bit is und	hanged	x = Bit is unk	nown	-n/n = Value	at POR and I	30R/Valu	ie at all o	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared							
bit 7	-	ented: Read as '								
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	utput Postscale	er Select bits						
	0000 = 1:1									
		0001 = 1:2 Postscaler								
		0010 = 1:3 Postscaler								
		0011 = 1:4 Postscaler								
		0100 = 1:5 Postscaler								
		0101 = 1:6 Postscaler 0110 = 1:7 Postscaler								
	0110 = 1.7 0111 = 1:8									
	1000 = 1:9									
) Postscaler								
		l Postscaler								
		1011 = 1:12 Postscaler								
		3 Postscaler								
		4 Postscaler								
	1110 = 1:15	5 Postscaler								
	1111 = 1:16	6 Postscaler								
bit 2	TMR2ON: T	Fimer2 On bit								
	1 = Timer2	is on								
	0 = Timer2	is off								
bit 1-0	T2CKPS<1	:0>: Timer2 Cloo	ck Prescale Se	elect bits						
	00 = Presca	aler is 1								
	01 = Presca	aler is 4								
	10 = Presca	aler is 16								
	11 = Presca	aler is 64								
TABLE 21-1	: SUMMAI		TERS ASSO		TH TIMER2					
								Registe		
NI a constant			D14 4	D14.0	D:4 0	D:4 4				

REGISTER 21-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	-	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	-	—	TMR2IF	TMR1IF	90
PR2	Timer2 Module Period Register							189*	
T2CON	_	T2OUTPS<3:0> TMR2ON				T2CKPS<1:0>		191	
TMR2	Holding Register for the 8-bit TMR2 Count							189*	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

Note 1: PIC16(L)F1575 only.

R/W-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0					
ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN					
bit 7	•					·	bit (
Legend:												
R = Readable	bit	W = Writable	e bit	U = Unimplem								
u = Bit is unch	anged	x = Bit is unl	known	-n/n = Value at	POR and BC	DR/Value at all o	other Resets					
'1' = Bit is set		'0' = Bit is cl	eared									
bit 7		Auto-Baud Dete	ect Overflow bit									
Sit I	Asynchrono											
		ud timer overflo	owed									
		ud timer did no	t overflow									
	Synchronou Don't care	Synchronous mode:										
bit 6		ceive Idle Flag b	oit									
		RCIDL: Receive Idle Flag bit Asynchronous mode:										
	1 = Receiver is idle											
	0 = Start bit has been received and the receiver is receiving Synchronous mode:											
	Don't care	is mode.										
bit 5	Unimpleme	ented: Read as	·'0'									
bit 4	SCKP: Synchronous Clock Polarity Select bit											
	Asynchronous mode:											
	 1 = Transmit inverted data to the TX/CK pin 0 = Transmit non-inverted data to the TX/CK pin 											
	Synchronous mode:											
	 1 = Data is clocked on rising edge of the clock 0 = Data is clocked on falling edge of the clock 											
bit 3	BRG16: 16-	-bit Baud Rate	Generator bit									
		Baud Rate Generaud Rate Gener										
bit 2	Unimpleme	ented: Read as	ʻ0'									
bit 1	WUE: Wake	e-up Enable bit										
	Asynchronous mode:											
	1 = Receiver is waiting for a falling edge. No character will be received, RCIF bit will be set. WUE w automatically clear after RCIF is set.											
		0 = Receiver is operating normally										
	Synchronous mode: Don't care											
bit 0		ito-Baud Detect	t Enable bit									
	-		de is enabled (c	lears when auto	-baud is com	nplete)						
	0 = Auto-Ba	aud Detect mod				-						
	Synchronou	<u>is mode</u> :										
DIT U	Asynchrono 1 = Auto-Ba 0 = Auto-Ba	ous mode: aud Detect mod aud Detect mod	de is enabled (c	lears when auto	o-baud is com	nplete)						

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

22.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

22.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 22.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

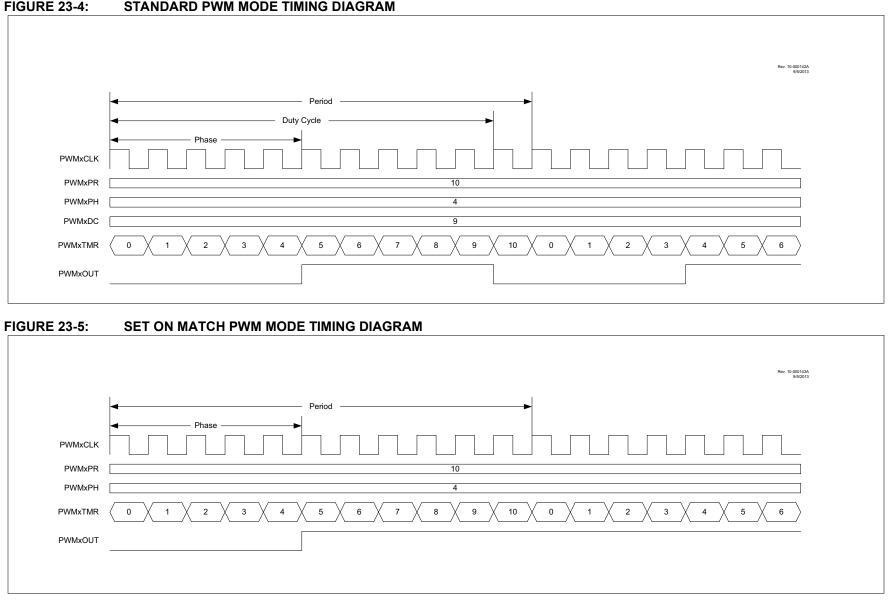

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 22.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 22-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	_	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
TXREG	EUSART Transmit Data Register							194*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

FIGURE 23-4:

STANDARD PWM MODE TIMING DIAGRAM

PIC16(L)F1574/5/8/9

26.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 26-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

26.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 26-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 26-2:ABBREVIATIONDESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-Out bit			
С	Carry bit			
DC	Digit Carry bit			
Z	Zero bit			
PD	Power-Down bit			

PIC16(L)F1574/5/8/9

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO, PD}$
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR + 1 (preincrement)} \\ &\text{•} \ &\text{FSR - 1 (predecrement)} \\ &\text{•} \ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR + 1 (all increments)} \\ &\text{•} \ &\text{FSR - 1 (all decrements)} \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

> **Note:** The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Description:

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

TRIS	Load TRIS Register with W
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f							
Syntax:	[<i>label</i>] XORWF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	(W) .XOR. (f) \rightarrow (destination)							
Status Affected:	Z							
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.							

TABLE 27-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

PIC16LF1	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode								
PIC16F157	74/5/8/9	Low-Power Sleep Mode, VREGPM = 1							
Param.			T	Max.	Max.	L lucito	Conditions		
No.	Device Characteristics	Min.	Тур†	+85°C	+125°C	Units	Vdd	Note	
D027		—	5	22	25	μA	1.8	Comparator,	
		_	5	23	27	μA	3.0	CxSP = 0	
D027		_	15	23	25	μA	2.3	Comparator,	
		_	17	27	29	μA	3.0	CxSP = 0	
		—	19	28	30	μA	5.0		
D028A		_	23	41	42	μA	1.8	Comparator,	
		—	25	42	44	μΑ	3.0	Normal Power, CxSP = 1 (Note 1)	
D028A			33	55	56	μA	2.3	Comparator,	
			34	59	60	μA	3.0	Normal Power, $CxSP = 1$	
		_	36	60	61	μA	5.0	VREGPM = 1 (Note 1)	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

*

TABLE 27-15: COMPARATOR SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage		±7.5	±60	mV	CxSP = 1, VICM = VDD/2	
CM02	VICM	Input Common Mode Voltage	0		Vdd	V		
CM03	CMRR	Common Mode Rejection Ration	_	50	_	dB		
CM04A		Response Time Rising Edge	_	400	800	ns	CxSP = 1	
CM04B	TRESP ⁽²⁾	Response Time Falling Edge	_	200	400	ns	CxSP = 1	
CM04C		Response Time Rising Edge	_	1200	_	ns	CxSP = 0	
CM04D		Response Time Falling Edge	_	550	_	ns	CxSP = 0	
CM05*	Тмс2о∨	Comparator Mode Change to Output Valid	_	—	10	μS		
CM06	CHYSTER	Comparator Hysteresis		25		mV	CxHYS = 1, CxSP = 1	

* These parameters are characterized but not tested.

Note 1: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 27-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size	—	VDD/32	_	V		
DAC02*	CACC	Absolute Accuracy	—	—	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	—	5K	_	Ω		
DAC04*	CST	Settling Time ⁽²⁾	_	—	10	μS		

* These parameters are characterized but not tested.

Note 1: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

PIC16(L)F1574/5/8/9

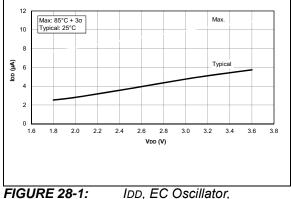


FIGURE 28-1: IDD, EC Oscillato Low-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

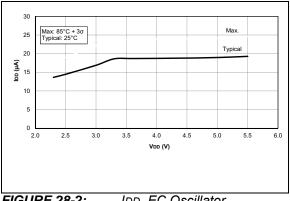
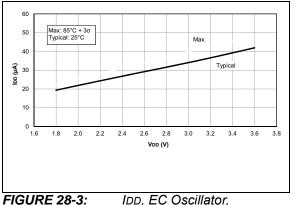



FIGURE 28-2: IDD, EC Oscillator, Low-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

Low-Power Mode, Fosc = 500 kHz, PIC16LF1574/5/8/9 Only.

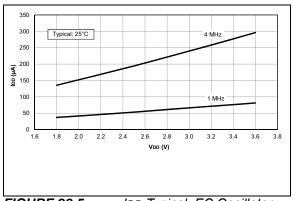


FIGURE 28-5:IDD Typical, EC Oscillator,Medium Power Mode, PIC16LF1574/5/8/9 Only.

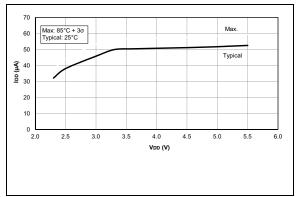


FIGURE 28-4: IDD, EC Oscillator, Low-Power Mode, Fosc = 500 kHz, PIC16F1574/5/8/9 Only.

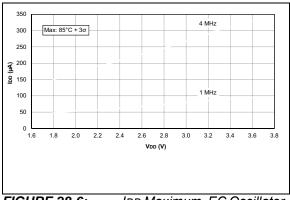


FIGURE 28-6: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16LF1574/5/8/9 Only.