E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	JDEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constant	s	
DW	DATA0	;First constant
DW	DATA1	;Second constant
DW	DATA2	
DW	DATA3	
my_funct	ion	
; LOT	S OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constant	s
MOVWF	FSR1L	
MOVLW	HIGH constan	nts;MSb is set
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	<pre>;carry from ADDLW?</pre>
INCF	FSR1H,f	;yes
MOVIW	0[FSR1]	
;THE PRO	GRAM MEMORY I	S IN W

TABLE 3-6: PIC16(L)F1579 MEMORY MAP, BANKS 0-7

	BANK0	•	, BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	—	08Fh	_	10Fh	—	18Fh	_	20Fh	—	28Fh		30Fh		38Fh	—
010h	—	090h	-	110h	—	190h	—	210h	—	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	—	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	—	293h		313h		393h	IOCAF
014h	—	094h	_	114h	CM2CON1	194h	PMDATH	214h	—	294h		314h		394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	—	295h	—	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	—	296h	_	316h	_	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h		298h		318h		398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	—	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	_	29Ah	—	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRGL	21Bh	_	29Bh	_	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch		31Ch		39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh	_	39Fh	_
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h 07Fh	Common RAM	0F0h 0FFh	Accesses 70h – 7Fh	170h 17Fh	Accesses 70h – 7Fh	1F0h 1FFh	Accesses 70h – 7Fh	270h 27Fh	Accesses 70h – 7Fh	2F0h 2FFh	Accesses 70h – 7Fh	370h 37Fh	Accesses 70h – 7Fh	3F0h 3FFh	Accesses 70h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1579.

TABLE 3-15:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED))
-------------	-------------------------------------	-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
08Ch	TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	1111	1111
08Eh	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	nted							_	_
090h	—	Unimplemen	nted							_	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	000000	000000
092h	PIE2	_	C2IE	C1IE	—	—	—	—	_	-00	-00
093h	PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	—	—	_	0000	0000
094h	—									—	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0	>		SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TU	N<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRO	CF<3:0>		_	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0q0 0q00	-ববর বরবর
09Bh	ADRESL	ADC Result	Register Lov	v							uuuu uuuu
09Ch	ADRESH	ADC Result	Register Hig							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>	`	GO/DONE ADON			-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0	>	—	_	ADPRE	EF<1:0>	000000	000000
09Fh	ADCON2		TRIGS	SEL<3:0>		_	_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	(Continued)										
DC9h	PWM4TMRL				-	TMR<7:0>				xxxx xxxx	uuuu uuuu
DCAh	PWM4TMRH				Т	MR<15:8>				xxxx xxxx	uuuu uuuu
DCBh	PWM4CON	EN	—	OUT	POL	MODE	E<1:0>	_	—	0000 00	0000 00
DCCh	PWM4INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DCDh	PWM4INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
DCEh	PWM4CLKCON	—		PS<2:0>		_	—	CS∢	<1:0>	-000 -000	-00000
DCFh	PWM4LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DD0h	PWM40FCON	—	OFM	<1:0>	OFO	_	—	OFS	<1:0>	-000 -000	-00000
DD1h to DEFh	_	Unimplemented								_	
Bank 28											
E0Ch											
E0Eh	-	Unimplemen	ited							—	_
E0Fh	PPSLOCK	—	—	_	—	_	_	—	PPSLOCKED	0	0
E10h	INTPPS	_	_	_		•	INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS	_	_	_			T0CKIPPS<4:0>	>		0 0010	u uuuu
E12h	T1CKIPPS	_	_	_			T1CKIPPS<4:0>	`		0 0101	u uuuu
E13h	T1GPPS	_	_	_			T1GPPS<4:0>			0 0100	u uuuu
E14h	CWG1INPPS	_	_	_			CWGINPPS<4:0	>		0 0010	u uuuu
E15h	RXPPS								1 0101	u uuuu	
E16h	CKPPS	_	— — — CKPPS<4:0>							1 0101	u uuuu
E17h	ADCACTPPS	ADCACTPPS<4:0>							1 0101	u uuuu	
E18h to E6Fh	_	Unimplemer	nted							—	_

TABLE 3-15: SPECIAL EUNCTION DEGISTED SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

DS40001782C-page 45

6.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- · BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0	37	Awake	Active	Waits for BOR ready (BORRDY = 1)
10	Х	Sleep	Disabled	
0.1	1	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
01	0	х	Disabled	Begins immediately (BORRDY = x)
00	Х	Х	Disabled	

TABLE 6-1:BOR OPERATING MODES

Note 1: In these specific cases, "release of POR" and "wake-up from Sleep," there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

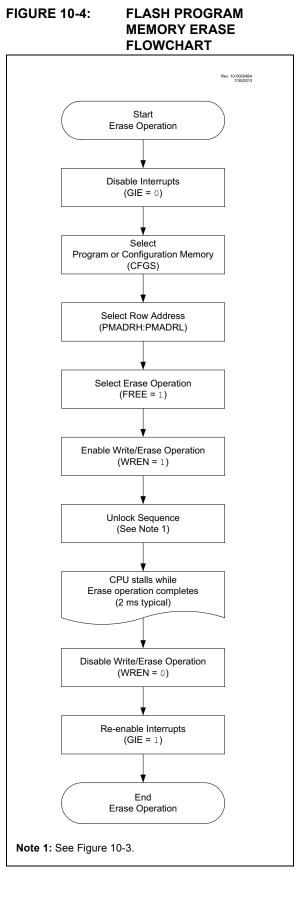
BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

	D 0/0	D 0/0	D 0/0	11.0		11.0	
R-0/0	R-0/0	R-0/0	R-0/0	U-0	U-0	U-0	U-0
PWM4IF ⁽¹⁾	PWM3IF ⁽¹⁾	PWM2IF ⁽¹⁾	PWM1IF ⁽¹⁾	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	PWM4IF: PW	/M4 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt i	is pending					
	0 = Interrupt	is not pending					
bit 6	PWM3IF: PW	/M3 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 5	PWM2IF: PW	/M2 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 4	PWM1IF: PW	/M1 Interrupt F	lag bit ⁽¹⁾				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 3-0	Unimplemen	nted: Read as '	0'				
Note 1. Th	oso hits aro roa	d only Thoy m	ust be cleared	l by addragain	a the Flee regist	ora inaida tha n	aadula

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

- Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

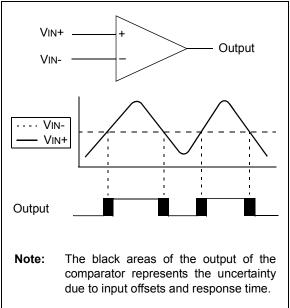

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.



U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimpleme	nted bit, read as	s 'O'	
	n only be set	x = Bit is unkno		•	-	√alue at all other Ⅰ	Resets
'1' = Bit is	set	'0' = Bit is clea	red	HC = Bit is clear			
h :+ 7		tod. Dood on (1)					
bit 7	-	ted: Read as '1'					
bit 6	•	guration Select bit Configuration, Use		ID Registers			
		Flash program me		ID Registers			
bit 5	LWLO: Load	Write Latches On	ly bit ⁽³⁾				
		addressed progra	•	e latch is loaded/ι	pdated on the	next WR comman	d
		ressed program m	•	h is loaded/update	ed and a write of	all program mem	ory write latche
		itiated on the nex					
bit 4	•	am Flash Erase E					
		s an erase operati s an write operatio			rdware cleared	upon completion)	
bit 3		gram/Erase Error					
		n indicates an im		or erase sequend	e attempt or te	rmination (bit is s	et automatical
		et attempt (write '	,	,			
	0 = The prog	gram or erase ope	ration completed	d normally.			
bit 2	•	am/Erase Enable					
	•	rogram/erase cyc programming/eras		lach			
bit 1	WR: Write Co	0 0	ing of program i	10311			
		a program Flash	orogram/erase o	peration			
		ration is self-timed	0	•	re once operatio	on is complete.	
		bit can only be se	, ,				
	0 = Program	/erase operation	to the Flash is co	omplete and inact	ive.		
bit 0	RD: Read Co						
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	lware. The RD bit	can only be se
	•	red) in software. t initiate a prograr	n Flash read.				
Note 1:	Unimplemented bit						
2:	The WRERR bit is		by hardware whe	en a program mer	nory write or era	ase operation is st	arted (WR = 1
3:	The LWLO bit is igr	-	-		-	•	

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

FIGURE 18-2: SINGLE COMPARATOR

18.2 Comparator Control

The comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- · Output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC1_output
- FVR_buffer2
- Vss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

Complementary Waveform Generator (CWG)

Note: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

20.5.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

20.5.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-tohigh pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

20.5.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 20-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

20.5.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/ DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/ DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 20-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 20-6 for timing details.

20.5.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

20.5.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

20.6 Timer1 Interrupt

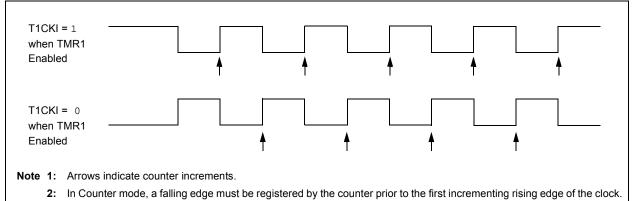
The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

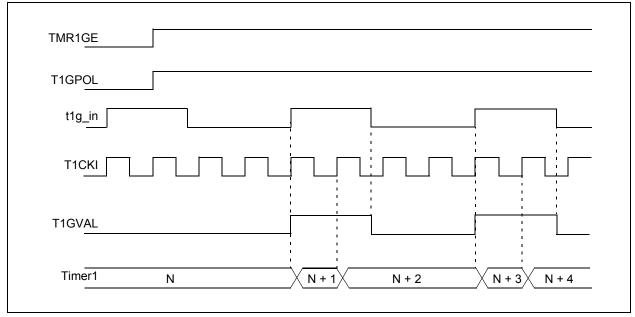
The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

20.7 Timer1 Operation During Sleep

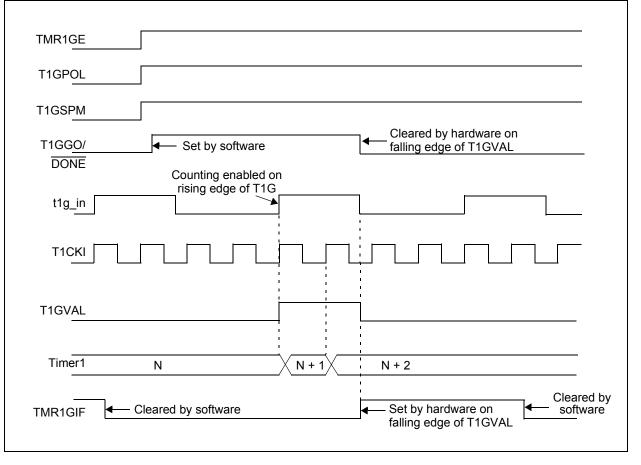

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- · TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured


The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

FIGURE 20-3: TIMER1 GATE ENABLE MODE



PIC16(L)F1574/5/8/9

FIGURE 20-4: TIMER1 GATE TOGGLE MODE

TMR1GE	
T1GPOL	
T1GTM	
t1g_in	
T1GVAL	
Timer 1 N $\sqrt{N+1}\sqrt{N+2}\sqrt{N+3}\sqrt{N+4}$	$\sqrt{N+5}\sqrt{N+6}\sqrt{N+7}\sqrt{N+8}$

FIGURE 20-5: TIMER1 GATE SINGLE-PULSE MODE

21.5 Register Definitions: Timer2 Control

	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_		T2OUTI	PS<3:0>		TMR2ON	T2CKF	PS<1:0>			
bit 7						I	bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'				
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all	other Resets			
'1' = Bit is se	et	'0' = Bit is cle	ared							
L:1 7		unte de De e d'ans (0'							
bit 7	-	ented: Read as '		v Calaat hita						
bit 6-3	0000 = 1:1	3:0>: Timer2 Ou	ilput Posiscale	er Select bits						
	0000 = 1.1									
	0010 = 1:3									
		0011 = 1:4 Postscaler								
	0100 = 1 :5	Postscaler								
	0101 = 1:6 Postscaler									
	0110 = 1 :7									
	0111 = 1:8									
	1000 = 1:9									
) Postscaler I Postscaler								
		2 Postscaler								
		3 Postscaler								
		4 Postscaler								
		5 Postscaler								
	1111 = 1:16	6 Postscaler								
bit 2	TMR2ON: 1	Fimer2 On bit								
	1 = Timer2 is on									
	0 = Timer2	is off								
bit 1-0	T2CKPS<1	:0>: Timer2 Cloc	k Prescale Se	lect bits						
	00 = Presca	aler is 1								
	01 = Presca	aler is 4								
	10 = Presca	aler is 16								
	11 = Presca	aler is 64								
TABLE 21-1	I: SUIVIIVIA	RY OF REGIS	1 EKS ASSU		H HIMERZ					

REGISTER 21-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
PR2	Timer2 Module Period Register								
T2CON	_	T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						191	
TMR2	Holding Reg	ister for the 8	-bit TMR2 Co	unt					189*

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

Note 1: PIC16(L)F1575 only.

22.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

22.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

22.1.2.6 Receiving 9-bit Characters

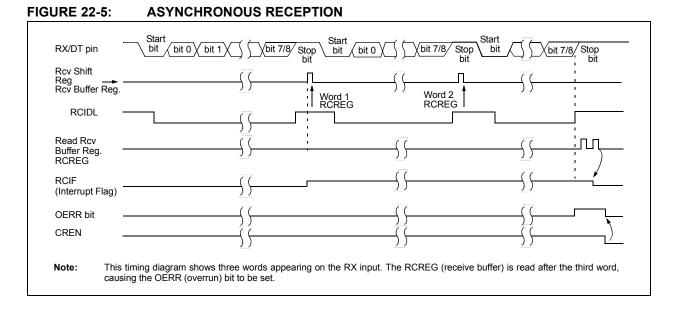
The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

22.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.


22.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 23-7: PWMxPHH: PWMx PHASE COUNT HIGH REGISTER

bit 7-0 **PH<15:8>**: PWM Phase High bits Upper eight bits of PWM phase count

REGISTER 23-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
PH<7:0>									
bit 7 bit									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PH<7:0>**: PWM Phase Low bits Lower eight bits of PWM phase count

Г

27.3 DC Characteristics

TABLE 27-1:SUPPLY VOLTAGE

PIC16LF	1574/5/8/9	1	Standard Operating Conditions (unless otherwise stated)									
PIC16F1	574/5/8/9											
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
D001	Vdd	Supply Voltage										
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)					
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)					
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾										
			1.5	—	_	V	Device in Sleep mode					
D002*			1.7	-	_	V	Device in Sleep mode					
D002A*	VPOR	Power-on Reset Release Voltage ⁽²⁾										
				1.6	—	V						
D002A*				1.6	—	V						
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾										
				0.8	—	V						
D002B*				1.5	—	V						
D003	VFVR	Fixed Voltage Reference Voltage	_	1.024	_	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$					
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-4 -4 -5	_	4 4 5	%	$\begin{array}{l} 1x \; VFvR, \; ADFVR = \; 01, \; VDD \geq 2.5V \\ 2x \; VFvR, \; ADFVR = \; 10, \; VDD \geq 2.5V \\ 4x \; VFvR, \; ADFVR = \; 11, \; VDD \geq 4.75V \end{array}$					
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator	-4 -4 -5	—	4 4 5	%	1x VFVR, CDAFVR = 01, VDD \geq 2.5V 2x VFVR, CDAFVR = 10, VDD \geq 2.5V 4x VFVR, CDAFVR = 11, VDD \geq 4.75V					
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

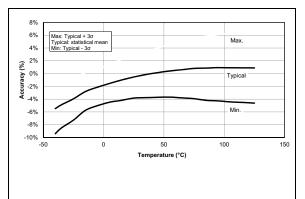
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 27-3, POR and POR REARM with Slow Rising VDD.

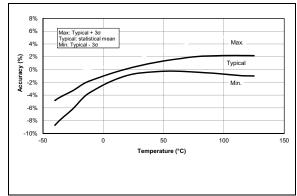
3: PLL required for 32 MHz operation.

PIC16LF	1574/5/8/9	Standard Operating Conditions (unless otherwise stated)								
PIC16F1574/5/8/9										
Param.	Device	Min.	Typ†	Max.	Units		Conditions			
No.	Characteristics		וקעי	WIGA.	Units	VDD	Note			
D018A*		—	2.3	2.8	mA	3.0	Fosc = 32 MHz, HFINTOSC (Note 3)			
D018A*		—	2.5	2.9	mA	3.0	Fosc = 32 MHz,			
		—	2.6	3.0	mA	5.0	HFINTOSC (Note 3)			
D019A		—	2.0	2.2	mA	3.0	Fosc = 32 MHz, External Clock (ECH), High-Power mode (Note 3)			
D019A		—	2.1	2.3	mA	3.0	Fosc = 32 MHz,			
		—	2.2	2.7	mA	5.0	External Clock (ECH), High-Power mode (Note 3)			
D019B		—	2.6	16	μA	1.8	Fosc = 32 kHz,			
		—	5.0	22	μA	3.0	External Clock (ECL), Low-Power mode			
D019B			14	23	μA	2.3	Fosc = 32 kHz,			
			18	29	μA	3.0	External Clock (ECL), Low-Power mode			
		_	20	30	μA	5.0				
D019C			21	29	μA	1.8	Fosc = 500 kHz,			
		_	35	44	μA	3.0	External Clock (ECL), Low-Power mode			
D019C		_	34	46	μA	2.3	Fosc = 500 kHz,			
		_	43	59	μA	3.0	External Clock (ECL), Low-Power mode			
		_	49	61	μA	5.0				

SUPPLY CURRENT (IDD)^(1,2) (CONTINUED) **TABLE 27-2:**


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

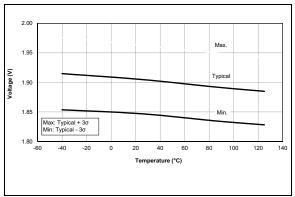

3: PLL required for 32 MHz operation.

FIGURE 28-43: HFINTOSC Accuracy Over Temperature, VDD = 1.8V, LF Devices Only.

FIGURE 28-44: HFINTOSC Accuracy Over Temperature, $2.3V \le VDD \le 5.5V$.

FIGURE 28-45: Brown-Out Reset Voltage, BORV = 1, PIC16LF1574/5/8/9 Only.

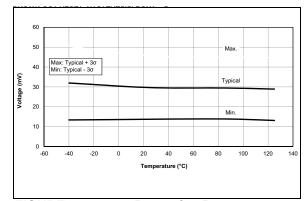
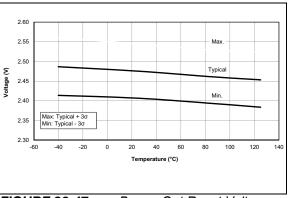



FIGURE 28-46: Brown-Out Reset Hysteresis, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-47: Brown-Out Reset Voltage, BORV = 1, PIC16F1574/5/8/9 Only.

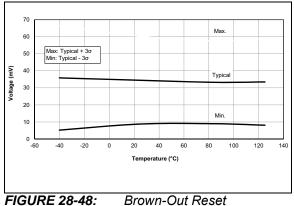
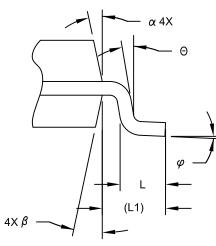
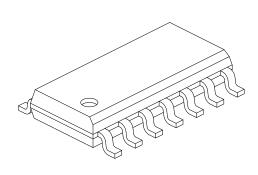




FIGURE 28-48: Brown-Out Reset Hysteresis, BORV = 1, PIC16F1574/5/8/9 Only.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lir	nits	MIN	NOM	MAX		
Number of Pins	N		14			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E		6.00 BSC			
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.04 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	c	0.10	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2