

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

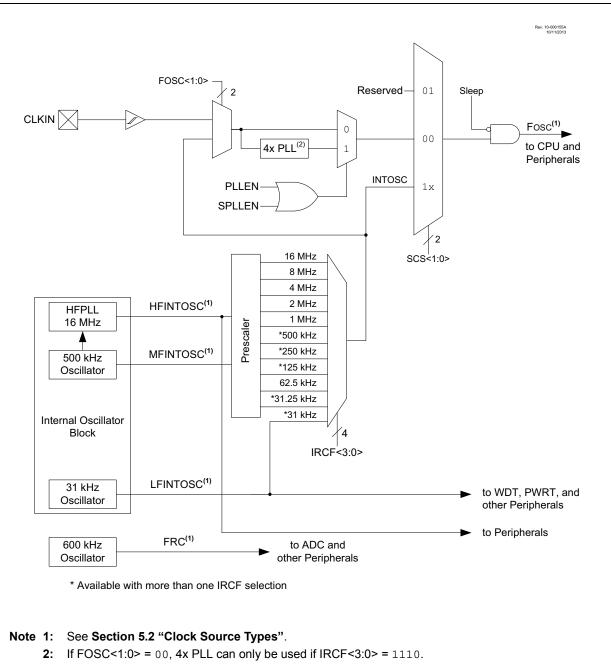
Packages	PDIP	SOIC	TSSOP	SSOP	UQFN
PIC16(L)F1574	•	•	•		•
PIC16(L)F1575	•	•	•		•
PIC16(L)F1578	•	•		•	•
PIC16(L)F1579	•	•		•	•

Note: Pin details are subject to change.

TABLE 3-8:PIC16(L)F1575/9 MEMORY MAP, BANKS 8-15

400h 40Bh 40Ch	Core Registers (Table 3-2)	480h		1 r											
-			Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
40Ch	(14016-5-2)	48Bh	(Table 3-2)	50Bh	(Table 3-2)	58Bh	(Table 3-2)	60Bh	(Table 3-2)	68Bh	(Table 3-2)	70Bh	(Table 3-2)	78Bh	(Table 3-2)
10011	—	48Ch	—	50Ch	—	58Ch	—	60Ch	_	68Ch	_	70Ch	_	78Ch	—
40Dh	_	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	_	70Dh	—	78Dh	_
40Eh	_	48Eh	—	50Eh	—	58Eh	—	60Eh	_	68Eh	_	70Eh	_	78Eh	_
40Fh	_	48Fh	_	50Fh	_	58Fh	—	60Fh	—	68Fh	_	70Fh	—	78Fh	_
410h	_	490h	—	510h	—	590h	—	610h	—	690h	_	710h	—	790h	_
411h	—	491h	—	511h	—	591h	—	611h	—	691h	CWG1DBR	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	—	513h	—	593h	—	613h	—	693h	CWG1CON0	713h	—	793h	—
414h	—	494h	—	514h	—	594h	—	614h	_	694h	CWG1CON1	714h	_	794h	—
415h	—	495h	—	515h	—	595h	—	615h	_	695h	CWG1CON2	715h	_	795h	—
416h	—	496h	—	516h	—	596h	—	616h	_	696h	_	716h	_	796h	
417h	—	497h	—	517h	—	597h	—	617h	_	697h	—	717h	_	797h	—
418h	—	498h	—	518h	—	598h	—	618h	_	698h	_	718h	_	798h	
419h	—	499h	—	519h	—	599h	—	619h	_	699h	_	719h	_	799h	
41Ah	—	49Ah	—	51Ah	—	59Ah	—	61Ah	—	69Ah	—	71Ah	—	79Ah	—
41Bh	—	49Bh	—	51Bh	—	59Bh	—	61Bh	_	69Bh	—	71Bh	_	79Bh	—
41Ch	—	49Ch	—	51Ch	—	59Ch	—	61Ch	_	69Ch	—	71Ch	_	79Ch	—
41Dh	—	49Dh	—	51Dh	—	59Dh	—	61Dh	_	69Dh	_	71Dh	_	79Dh	
41Eh	—	49Eh	—	51Eh	—	59Eh	—	61Eh	_	69Eh	—	71Eh	_	79Eh	—
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose Register	6A0h		720h		7A0h	
	General		General		General		General	63Fh	32 Bytes		Unimplemented		Unimplemented		Unimplemented
	Purpose Register		Purpose Register		Purpose Register		Purpose Register	640h			Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		Unimplemented Read as '0'		iteau as o		iteau as o		Nedu as 0
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'


TABLE 3-10: PIC16(L)F1574/5/8/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh	(10010 0 2)	C8Bh	(10010 0 2)	D0Bh	(10510 0 2)	D8Bh	(10010 0 2)	E0Bh	(10010 0 2)	E8Bh	(10010 0 2)	F0Bh	(10010 0 2)	F8Bh	(10010 0 2)
C0Ch	_	C8Ch	_	D0Ch	—	D8Ch		E0Ch		E8Ch		F0Ch	_	F8Ch	
C0Dh		C8Dh	_	D0Dh	—							F0Dh	_		
C0Eh		C8Eh		D0Eh	—							F0Eh	—		
C0Fh	—	C8Fh	_	D0Fh	—							F0Fh	_		
C10h	—	C90h	_	D10h	—							F10h	_		
C11h	—	C91h	_	D11h	_							F11h	_		
C12h	—	C92h	_	D12h	_							F12h	_		
C13h		C93h		D13h	—							F13h	—		
C14h	—	C94h		D14h	—							F14h	—		
C15h	—	C95h		D15h	—							F15h	—		
C16h	—	C96h	_	D16h	_							F16h	_		
C17h	—	C97h	_	D17h	_							F17h	_		
C18h	_	C98h	—	D18h	—		See Table 3-11		See Table 3-12		See Table 3-12	F18h			See Table 3-13
C19h		C99h	_	D19h	_							F19h	_		
C1Ah		C9Ah	_	D1Ah	_							F1Ah	_		
C1Bh		C9Bh	_	D1Bh	_							F1Bh	_		
C1Ch		C9Ch	_	D1Ch	—							F1Ch	—		
C1Dh		C9Dh	—	D1Dh	—							F1Dh	—		
C1Eh		C9Eh	—	D1Eh	—							F1Eh	_		
C1Fh	_	C9Fh	_	D1Fh	_							F1Fh			
C20h		CA0h		D20h								F20h			
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'								Unimplemented Read as '0'		
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh														
	-	CFFh	7011-7111	D7Fh	/011 - /111	DFFh	7011-7111	E7Fh	701-711	EFFh	-	F7Fh	7011-7111	FFFh	/011-/111
CFFh		OFFN		DIFN		DEEU								LLLU	

Legend: = Unimplemented data memory locations, read as '0'

PIC16(L)F1574/5/8/9

6.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR voltage threshold (VLPBOR) has a wider tolerance than the BOR (VBOR), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
х	1	Enabled

6.5.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0 "Watchdog Timer (WDT)"** for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2 "Overflow/Underflow Reset"** for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overline{\text{PWRTE}}$ bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 FOSC cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	х	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWM4IE	PWM3IE	PWM2IE	PWM1IE		—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7		/M4 Interrupt E					
		the PWM4 inte					
		the PWM4 inte	•				
bit 6		/M3 Interrupt E					
		the PWM3 inte	•				
	0 = Disables	the PWM3 inte	errupt				
bit 5	PWM2IE: PW	/M2 Interrupt E	nable bit				
		the PWM2 inte					
	0 = Disables	the PWM2 inte	errupt				
bit 4	PWM1IE: PW	/M1 Interrupt E	nable bit				
		the PWM1 inte					
	0 = Disables	the PWM1 inte	errupt				
bit 3-0	Unimplemen	ted: Read as '	0'				
Note: Bit	PEIE of the IN	TCON register	must be				
	to enable any						

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	d x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared							
'1' = Bit is set		ʻ0' = Bit is clea	ared							

REGISTER 11-5: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up Register bits⁽³⁾ 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- **3:** For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.

REGISTER 11-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA5	ODA4	—	ODA2	ODA1	ODA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

12.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 12-1.

12.1 PPS Inputs

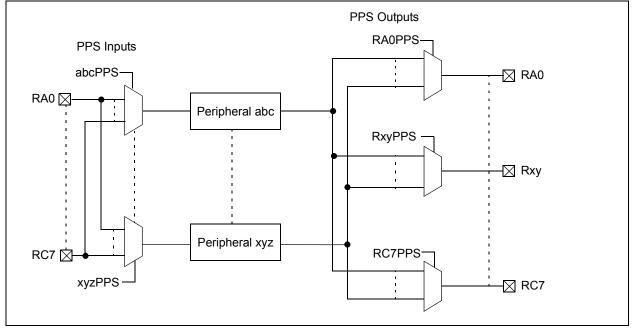
Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has associated analog functions, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 12-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, CLC1PPS.

12.2 PPS Outputs


Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- · CWG (auto-shutdown)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 12-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

FIGURE 12-1: SIMPLIFIED PPS BLOCK DIAGRAM

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0			
_	—	_	—	_	_	PPSLOCKED			
bit 7 bit									
e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = B		k = Bit is unknown		-n/n = Value at POR and BOR/Value at all oth					
	'0' = Bit is clea	ared							
	e bit	e bit W = Writable H nanged x = Bit is unkn	e bit W = Writable bit nanged x = Bit is unknown	e bit W = Writable bit U = Unimplen nanged x = Bit is unknown -n/n = Value a	- - - - e bit W = Writable bit U = Unimplemented bit, rea nanged x = Bit is unknown -n/n = Value at POR and BO	- - - - - e bit W = Writable bit U = Unimplemented bit, read as '0' nanged x = Bit is unknown -n/n = Value at POR and BOR/Value at al			

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

13.6 Register Definitions: Interrupt-on-Change Control

REGISTER 13-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	
bit 7				-			bit 0	
Legend:								
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed					

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

14.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
FVREN ⁽¹⁾	FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFV	′R<1:0> ⁽¹⁾	ADFVR	<1:0> ⁽¹⁾		
bit 7							bit		
Legend:									
R = Readable		W = Writable			mented bit, read				
u = Bit is unc	0	x = Bit is unk			at POR and BO		other Resets		
'1' = Bit is set	:	'0' = Bit is cle	ared	q = Value de	pends on condit	ion			
bit 7	1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit ⁽¹⁾					
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea		enabled				
bit 5	1 = Tempera	erature Indicator ture Indicator i ture Indicator i	s enabled)					
bit 4	1 = VOUT = V	perature Indica ′DD - 4V⊤ (Higł ′DD - 2V⊤ (Low	Range)	election bit ⁽³⁾					
bit 3-2	11 = Compara 10 = Compara 01 = Compara	ator FVR Buffe ator FVR Buffe	er Gain is 4x, v er Gain is 2x, v er Gain is 1x, v	vith output Vcc	bits ⁽¹⁾ DAFVR = 4x VFVF DAFVR = 2x VFVF DAFVR = 1x VFVF	₂ (4)			
bit 1-0 ADFVR<1:0>: ADC FVR Buffer Gain Selection bit ⁽¹⁾ 11 = ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR ⁽⁴⁾ 10 = ADC FVR Buffer Gain is 2x, with output VADFVR = 2x VFVR ⁽⁴⁾ 01 = ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR 00 = ADC FVR Buffer is off									
inę	To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clear ing the Buffer Gain Selection bits.								

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

- 2: FVRRDY is always '1' for the PIC16F1574/5/8/9 devices.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.
- 4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR>1:0>		ADFV	R<1:0>	149

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R					other Resets		
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 16-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<1:0>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result bit 5-0 Reserved: Do not use.

20.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 20-1 displays the Timer1 enable selections.

TABLE 20-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

20.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 20-2 displays the clock source selections.

20.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

20.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 20-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T1OSCEN ⁽¹⁾	Clock Source
11	x	LFINTOSC
10	x	External Clocking on T1CKI Pin
01	x	System Clock (Fosc)
0 0	x	Instruction Clock (Fosc/4)

Note 1: T1OSC is not available on all devices.

20.5.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

20.5.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-tohigh pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

20.5.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 20-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

20.5.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/ DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/ DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 20-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 20-6 for timing details.

20.5.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

20.5.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	_	TMR2IF	TMR1IF	90
RCREG			EUS	ART Receiv	e Data Reg	gister			197*
RCSTA	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D						203*	
SPBRGL	BRG<7:0>					205*			
SPBRGH	BRG<15:8>					205*			
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

TABLE 22-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

23.7 Register Definitions: PWM Control

Long bit name prefixes for the 16-bit PWM peripherals are shown in Table 23-1. Refer to **Section 1.1 "Register and Bit Naming Conventions**" for more information

TABLE 23-1:

Peripheral	Bit Name Prefix
PWM1	PWM1
PWM2	PWM2
PWM3	PWM3
PWM4	PWM4

REGISTER 23-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EN	—	OUT	POL	MODE	E<1:0>	—	_
bit 7							bit 0

Legend:			
HC = Bit i	s cleared by ha	rdware	HS = Bit is set by hardware
R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is	set	'0' = Bit is cleared	
bit 7	EN: PWM	Module Enable bit	
		le is enabled	
	0 = Modu	le is disabled	
bit 6	Unimplen	nented: Read as '0'	
bit 5	OUT: Outp	out State of the PWM module	
bit 4	POL: PWI	M Output Polarity Control bit	
	1 = PWM	output active state is low	
	0 = PWM	output active state is high	
bit 3-2 MODE<1:0>: PWM Mode Control bits			
	11 = Cent	er-Aligned mode	
	10 = Togg	le On Match mode	
	01 = Set (On Match mode	
	00 = Stan	dard PWM mode	

bit 1-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	—	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0
[
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
u = Bit is unc	hanged	x = Bit is unkno	own	-n/n = Value at	POR and BOR	Value at all oth	er Resets
'1' = Bit is set	t	'0' = Bit is clea	red				
bit 7-4 bit 3	OFIE : Offset I 1 = Interrupt (0 = Do not int	ed: Read as '0' nterrupt Enable CPU on Offset M errupt CPU on 0	latch Offset Match				
bit 2 PHIE: Phase Interrupt Enable bit 1 = Interrupt CPU on Phase Match 0 = Do not Interrupt CPU on Phase Match							
bit 1 DCIE: Duty Cycle Interrupt Enable bit 1 = Interrupt CPU on Duty Cycle Match 0 = Do not interrupt CPU on Duty Cycle Match							
bit 0	bit 0 PRIE: Period Interrupt Enable bit 1 = Interrupt CPU on Period Match 0 = Do not interrupt CPU on Period Match						

REGISTER 23-2: PWMxINTE: PWM INTERRUPT ENABLE REGISTER

REGISTER 23-3: PWMxINTF: PWM INTERRUPT REQUEST REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
		_	_	OFIF	PHIF	DCIF	PRIF
bit 7	•			•	•		bit 0

Legend:		
HC = Bit is cleared by hard	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	OFIF: Offset Interrupt Flag bit ⁽¹⁾
	1 = Offset Match Event occurred
	0 = Offset Match Event did not occur
bit 2	PHIF: Phase Interrupt Flag bit ⁽¹⁾
	1 = Phase Match Event occurred
	0 = Phase Match Event did not occur
bit 1	DCIF: Duty Cycle Interrupt Flag bit ⁽¹⁾
	1 = Duty Cycle Match Event occurred
	0 = Duty Cycle Match Event did not occur
bit 0	PRIF: Period Interrupt Flag bit ⁽¹⁾
	1 = Period Match Event occurred
	0 = Period Match Event did not occur
Note 1:	Bit is forced clear by hardware while module is disabled (EN = 0)

Bit is forced clear by hardware while module is disabled (EN = 0).

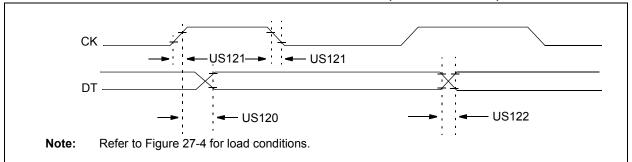
MOVIW	Move INDFn to W				
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]				
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31				
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{erfsR + 1 (preincrement)} \\ &\text{erfsR + 1 (predecrement)} \\ &\text{erfsR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{erfsR + 1 (all increments)} \\ &\text{erfsR + 1 (all decrements)} \\ &\text{erfsR - 1 (all decrements)} \\ &erfsR - 1 (all decr$				
Status Affected:	Z				

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

> **Note:** The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.


MOVLB Move literal to BSR

Description:

Syntax:	[<i>label</i>]MOVLB k		
Operands:	$0 \leq k \leq 31$		
Operation:	$k \rightarrow BSR$		
Status Affected:	None		
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).		

MOVLP	Move literal to PCLATH				
Syntax:	[<i>label</i>]MOVLP k				
Operands:	$0 \leq k \leq 127$				
Operation:	$k \rightarrow PCLATH$				
Status Affected:	None				
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.				
MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				
MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \le f \le 127$				
Operation:	$(W) \to (f)$				
Status Affected:	None				
Description:	Move data from W register to register f.				
Words:	1				
Cycles:	1				
Example:	MOVWF OPTION_REG				
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F				

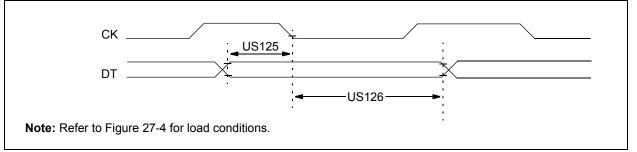

FIGURE 27-13: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-17: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 T	ТскH2ртV	SYNC XMIT (Master and Slave) Clock high to data-out valid	_	80	ns	$3.0V \le V\text{DD} \le 5.5V$
			—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time (Master mode)	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \le V\text{DD} \le 5.5V$
US122	TDTRF	Data-out rise time and fall time	—	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \le V\text{DD} \le 5.5V$

FIGURE 27-14: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-18: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar	d Operating	g Conditions (unless otherwise stated)				
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10	_	ns	
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns	