

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1579t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-15:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

						•	,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
08Ch	TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	_	1111	1111
08Eh	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	nted							_	_
090h	_	Unimplemen	nted							—	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	TMR2IE	TMR1IE	000000	000000
092h	PIE2	—	C2IE	C1IE	—		—	—	_	-00	-00
093h	PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE		_	—	_	0000	0000
094h	_									—	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUI	N<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRC	CF<3:0>		—	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0q0 0q00	-ddd dddd
09Bh	ADRESL	ADC Result	\DC Result Register Low						xxxx xxxx	uuuu uuuu	
09Ch	ADRESH	ADC Result	IC Result Register High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>	•		GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>	•	—	_	ADPRE	F<1:0>	000000	000000
09Fh	ADCON2		TRIGS	EL<3:0>		_	_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to user IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3: FLASH PROGRAM

MEMORY UNLOCK SEQUENCE FLOWCHART

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Reset	s
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

	PMDAT<13:8>				
bit 7					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0		
u = Bit is unchanged	b	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ie at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
(1)				PMADR<14:8>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchang	is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared	ł					

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

11.1 PORTA Registers

11.1.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as '1'. Example 11-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 11-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.1.2 DIRECTION CONTROL

The TRISA register (Register 11-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.1.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 11-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.1.4 SLEW RATE CONTROL

The SLRCONA register (Register 11-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.1.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 11-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.1.6 ANALOG CONTROL

The ANSELA register (Register 11-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

```
; This code example illustrates
; initializig the PORTA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTA
                     ;
CLRF
         PORTA
                     ;Init PORTA
BANKSEL LATA
                     ;Data Latch
CLRF
        T.ATA
                     ;
BANKSEL ANSELA
                     ;
CLRF
        ANSELA
                     ;digital I/O
BANKSEL TRISA
MOVLW
        B'00111000' ;Set RA<5:3> as inputs
MOVWF
        TRISA
                     ;and set RA<2:0> as
                     ;outputs
```

REGISTER 11-20:	ANSELC: PORTC ANALOG SELECT REGISTER
-----------------	--------------------------------------

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	
bit 7				•		•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is une	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is se	et	'0' = Bit is clea	ared					
bit 7-6 ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ^(1, 2) 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.								
bit 5-4 Unimplemented: Read as '0'								
bit 3-0 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively ⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.								
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to								

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

ADC Clock	Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0	20 MHz	20 MHz 16 MHz 8 MHz		4 MHz	1 MHz				
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs				
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs				
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs				
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs				
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs				
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs				
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs				

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

PIC16(L)F1574/5/8/9

REGISTER	R 16-2: ADC	ON1: ADC CO	NTROL RE	GISTER 1			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	—	ADPRE	EF<1:0>
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is un	ichanged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Format istified. Six Most tified. Six Least	Select bit Significant bi Significant bit	ts of ADRESH	are set to '0' w are set to '0' w	when the conve	ersion result is ersion result is
bit 6-4	ADCS<2:0> 000 = Fosc 001 = Fosc 010 = Fosc 011 = FRC 100 = Fosc 101 = Fosc 110 = Fosc 111 = FRC	: ADC Conversi 2/2 2/8 2/32 (clock supplied - 2/4 2/16 2/64 (clock supplied -	on Clock Sele from an intern from an intern	ct bits al RC oscillator al RC oscillator	r))		
bit 3-2	Unimpleme	nted: Read as '	כ'				
bit 1-0	ADPREF<1 00 = VRPOS 01 = Resen 10 = VRPOS 11 = VRPOS	:0>: ADC Positives is connected to ved to be connected to be is connec	ve Voltage Ret VDD external VREF internal Fixed	ference Configi -+ pin ⁽¹⁾ I Voltage Refer	uration bits ence (FVR)		
Note 1: V	When selecting t specification exis	he VREF+ pin as sts. See Section	the source of 27.0 "Electri	the positive re cal Specificati	ference, be awa ons" for details	are that a minir 8.	num voltage

PIC16(L)F1574/5/8/9

FIGURE 16-5: ANALOG INPUT MODEL

TABLE 20-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	70
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	91
TMR1H	Holding Regis	ster for the Mo	st Significant	Byte of the 16	6-bit TMR1 Co	unt			183*
TMR1L	Holding Regis	ster for the Lea	ast Significant	Byte of the 1	6-bit TMR1 Co	ount			183*
TRISA	—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	120
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	—	T1SYNC		TMR10N	186
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	187

Legend: * Page provides register information.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1575 only.

FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

		0.000.00	(0402040	0040040404	io (0010806	04	020304)enteziente	54,08(02)O	903	josionijos	4. X.	je (octoslov)	e (030	3021
0	aoa	pununun.	pununun.	.mmmm.	1. 	nununu		aunun.	nunun	upunun.	J. W	punun.	n.,	nununu;	nunun.	in an
		ન - 1313 કલ્પરે ઉત્પુર્વ	1970:					·	•	i.	3	, (į.		Oleorad -	
880	8:58	,	· · · · · · · · · · · · · · · · · · · ·	di 1			,		, , ,							······
RXCOT	1999	, ,	,	······		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mie	: [[]]]		, ,,			ina fa C			
		;	:			; ;		, N				, ,	; ;;	; ;		
2	99.261				inne. V	;; ;				ीकृत्यक्षतं त्यय	8363	Jaar Reed		90383-0X)	······.
	UI.				/////	///////////////////////////////////////	9111.						11111			[[]]]][[]
84000	8 91	162308480	(((()))) (()) ())	498 WORE 949 V	83.23	: 63 :5 965										

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	X	e şeştetçe (estets	1304(0 \$0	20302	01	503 203	40.404,0460	808/08/08/	03649	246030364	je teztera	22
0	80 (j	www.www.		u NU NU TU			MAUNA.	NYUNU	W.M	unununu.	pununun	u,
	, ,	- BR Sec by Week		2					1	AND (AND)	. Cieccad	ż
- 523	888			······································					1			
Service Service		· · · · · · · · · · · · · · · · · · ·										
34/4073	100000			4 4		Symmer and Stranger St			lla siz	18-1		5
:	aria t	*		4		- Jaamaan					4.	3
		Sincy Con	evania Exe	cuted	Steep	Ends (Cikered	dus in Dier Re	60 GÙ	360388763*		~

Auto 3: If the wake-up event requires long confluence warm-up fore, the reconstitute bearing of the VrUit bit can constructed the organic signal is all antive. This requestes should not denote an the presence of Q circles.

 $\Omega^{*}_{\rm c}$. The 2004-ABTE measure is idea where the Velot hit is and

22.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

22.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 22.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 22.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 22-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203	
TXREG		EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

23.3 Offset Modes

The Offset modes provide the means to adjust the waveform of a slave PWM module relative to the waveform of a master PWM module in the same device.

23.3.1 INDEPENDENT RUN MODE

In Independent Run mode (OFM = 00), the PWM module is unaffected by the other PWM modules in the device. The PWMxTMR associated with the PWM module in this mode starts counting as soon as the EN bit associated with this PWM module is set and continues counting until the EN bit is cleared. Period events reset the PWMxTMR to zero after which the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-8.

23.3.2 SLAVE RUN MODE WITH SYNC START

In Slave Run mode with Sync Start (OFM = 01), the slave PWMxTMR waits for the master's OF_match event. When this event occurs, if the EN bit is set, the PWMxTMR begins counting and continues to count until software clears the EN bit. Slave period events reset the PWMxTMR to zero after which the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-9.

23.3.3 ONE-SHOT SLAVE MODE WITH SYNC START

In One-Shot Slave mode with Synchronous Start (OFM = 10), the slave PWMxTMR waits until the master's OF_match event. The timer then begins counting, starting from the value that is already in the timer and continues to count until the period match event. When the period event occurs, the timer resets to zero and stops counting. The timer then waits until the next master OF_match event, after which it begins counting again to repeat the cycle. An OF_match event that occurs before the slave PWM has completed the previously triggered period will be ignored. A slave period that is greater than the master period, but less than twice the master period, will result in a slave output every other master period.

Note: During the time the slave timers are resetting to zero, if another Offset Match event is received, it is possible that the slave PWM would not recognize this match event and the slave timers would fail to begin counting again. This would result in missing duty cycles from the output of the slave PWM. To prevent this from happening, avoid using the same period for both the master and slave PWM's.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-10.

23.3.4 CONTINUOUS RUN SLAVE MODE WITH SYNC START AND TIMER RESET

In Continuous Run Slave mode with Synchronous Start and Timer Reset (OFM = 11) the slave PWMxTMR is inhibited from counting after the slave PWM enable is set. The first master OF match event starts the slave PWMxTMR. Subsequent master OF_match events reset the slave PWMxTMR timer value back to 1 after which the slave PWMxTMR continues to count. The next master OF match event resets the slave PWMxTMR back to 1 to repeat the cycle. Slave period events that occur before the master's OF match event will reset the slave PWMxTMR to zero after which the timer will continue to count. Slaves operating in this mode must have a PWMxPH register pair value equal to or greater than 1, otherwise, the phase match event will not occur precluding the start of the PWM output duty cycle.

The offset timing will persist If both the master and slave PWMxPR values are the same and the Slave Offset mode is changed to Independent Run mode while the PWM module is operating.

A detailed timing diagram of this mode used in Standard PWM mode is shown in Figure 23-11.

Note:	Unexpected results will occur if the slave
	PWM_clock is a higher frequency than the
	master PWM_clock.

23.3.5 OFFSET MATCH IN CENTER-ALIGNED MODE

When a master is operating in Center-Aligned mode the offset match event depends on which direction the PWMxTMR is counting. Clearing the OFO bit of the PWMxOFCON register will cause the OF_match event to occur when the timer is counting up. Setting the OFO bit of the PWMxOFCON register will cause the OF_match event to occur when the timer is counting down. The OFO bit is ignored in non-center-aligned modes.

The OFO bit is double buffered and requires setting the LDA bit to take effect when the PWM module is operating.

Detailed timing diagrams of Center-Aligned mode using offset match control in Independent Slave with Sync Start mode can be seen in Figure 23-12 and Figure 23-13.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
_		PS<2:0>		_	_	CS<	:1:0>
bit 7	·			·			bit 0
r							
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimpleme	ented bit, read a	s '0'	
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	Value at all other	Resets
'1' = Bit is se	et	'0' = Bit is clear	red				
bit 7	Unimplemen	ted: Read as '0'					
bit 6-4	PS<2:0>: Clo 111 = Divide 110 = Divide 101 = Divide 100 = Divide 011 = Divide 010 = Divide 001 = Divide 000 = No Pre	ck Source Presca clock source by a clock source by a	aler Select bits 128 64 32 16 3 4 2				
bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 11 = Reserve 10 = LFINTC 01 = HFINTC 00 = FOSC	ted: Read as '0' ick Source Select ed ISC (continues to DSC (continues to	bits operate during operate during	Sleep) J Sleep)			

REGISTER 23-4: PWMxCLKCON: PWM CLOCK CONTROL REGISTER

24.12 Register Definitions: CWG Control

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN	—	—	GxPOLB	GxPOLA	—		GxCS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	on	
bit 7	GxEN: CWG	k Enable bit					
	1 = Module is	s enabled					
		s disabled					
bit 6-5	Unimplemen	ted: Read as ')'				
bit 4	GxPOLB: CV	VGxB Output P	olarity bit				
	1 = Output is	inverted polar	ty				
	0 = Output is	normal polarity	ý				
bit 3	GxPOLA: CV	VGxA Output P	olarity bit				
	1 = Output is	inverted polar	ty				
	0 = Output is	normal polarity	ý				
bit 2-1	Unimplemen	ted: Read as '	כ'				
bit 0	GxCS0: CWC	Sx Clock Sourc	e Select bit				
	1 = HFINTOS	SC					
	0 = Fosc						

REGISTER 24-1: CWGxCON0: CWG CONTROL REGISTER 0

Mnen	nonic,	Description	Cyclos		14-Bit	Opcode)	Status	Notos
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	1nmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

PIC16(L)F1574/5/8/9

FIGURE 28-1: IDD, EC Oscillato Low-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-2: IDD, EC Oscillator, Low-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

Low-Power Mode, Fosc = 500 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-5:IDD Typical, EC Oscillator,Medium Power Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-4: IDD, EC Oscillator, Low-Power Mode, Fosc = 500 kHz, PIC16F1574/5/8/9 Only.

FIGURE 28-6: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16LF1574/5/8/9 Only.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	N	MILLIMETERS				
Dimension Lin	nits	MIN	NOM	MAX			
Number of Pins	Ν		14				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	E		6.00 BSC				
Molded Package Width	E1	3.90 BSC					
Overall Length	D		8.65 BSC				
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.04 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.10	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (2/2015)

Initial release of this document.

Revision B (09/2015)

Added Section 5.4: Clock Switching Before Sleep.

Updated Low-Power Features and Memory sections on cover page.

Updated Examples 3-2 and 16-1; Figures 8-1, 22-1, and 23-8 through 23-13; Registers 8-1, 23-6, 24-2, and 24-3; Sections 8.2.2, 16.2.6, 22.0, 23.3.3, 24.9.1.2, 24.11.1 and 27.1; and Tables 27-1, 27-2, 27-3, 27-8 and 27-11.

Revision C (01/2016)

Added graphs to chapter "DC and AC Characteristics Graphs and Charts". Other minor corrections.