
Microchip Technology - PIC16LF1574-E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1574-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:PIC16(L)F1574/5 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/ADCACT ⁽¹⁾ /CK ⁽¹⁾	RC4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	ADCACT	TTL/ST	—	ADC Auto-conversion Trigger input.
	СК	ST	CMOS	USART synchronous clock.
RC5/RX ^(1,3)	RC5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	RX	ST	_	USART asynchronous input.
OUT ⁽²⁾	C10UT	_	CMOS	Comparator output.
	C2OUT	_	CMOS	Comparator output.
	PWM10UT	-	CMOS	PWM1 output.
	PWM2OUT	-	CMOS	PWM2 output.
	PWM3OUT	_	CMOS	PWM3 output.
	PWM4OUT	-	CMOS	PWM4 output.
	CWG1A	_	CMOS	Complementary Output Generator Output A.
	CWG1B	_	CMOS	Complementary Output Generator Output B.
	TX/CK	-	CMOS	USART asynchronous TX data/synchronous clock output.
	DT ⁽³⁾	_	CMOS	USART synchronous data output.
VDD	Vdd	Power	—	Positive supply.
Vss	Vss	Power	—	Ground reference.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal
 Levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

		BANK5		BANK6		BANK7
	280h		300h		380h	
rs		Core Registers		Core Registers		Core Registers
		(Table 3-2)		(Table 3-2)		(Table 3-2)
	28Bh		30Bh		38Bh	
	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
	28Dh	_	30Dh	_	38Dh	_
	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
	28Fh	_	30Fh	_	38Fh	_
	290h	_	310h	_	390h	_
	291h	_	311h	_	391h	IOCAP
	292h	_	312h	_	392h	IOCAN
	293h	_	313h	_	393h	IOCAF
	294h	_	314h	_	394h	_
	295h	_	315h	_	395h	_
	296h	_	316h	_	396h	_
	297h	_	317h	_	397h	IOCCP
	298h		318h	_	398h	IOCCN
	299h	_	319h	_	399h	IOCCF
	29Ah	_	31Ah	_	39Ah	_
	29Bh	_	31Bh	_	39Bh	_
	29Ch		31Ch		39Ch	_
	29Dh	_	31Dh	_	39Dh	_
	20Fh		2456		2056	

_

General Purpose Register 80 Bytes

Accesses 70h – 7Fh

TABLE 3-4: PIC16(L)F1575 MEMORY MAP, BANKS 0-7 BANK0 BANK1

BANK2

000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		C												
	(Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	
00Dh	—	08Dh	—	10Dh	—	18Dh	_	20Dh	_	28Dh	_	30Dh	—	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	
00Fh	—	08Fh	—	10Fh	—	18Fh		20Fh	_	28Fh	—	30Fh	—	38Fh	
010h	—	090h	—	110h	—	190h	—	210h	—	290h	_	310h	—	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	_	311h	—	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	—	313h	—	393h	
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	—	314h	—	394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	—	315h	—	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	—	316h	—	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	—	397h	
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	_	39Ch	
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	_	29Dh	_	31Dh	—	39Dh	
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	—	31Eh	—	39Eh	
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses 70h – 7Fh												
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

BANK3

BANK4

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1575.

DS40001782C-page 26

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4 "Write Protection"** for more information.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC16(L)F157x Memory Programming Specification*" (DS40001766).

4.6 Device ID and Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch does not
	update the SCS bits of the OSCCON
	register. The user can monitor the OSTS
	bit of the OSCSTAT register to determine
	the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.4 Clock Switching Before Sleep

When clock switching from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock Status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

TABLE 5-1:	OSCILLATOR SWITCHING DELAYS
	OUCLEATOR OWN ON TO DEER TO

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep/POR	EC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

2: See Section 27.0 "Electrical Specifications".

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
'1' = Bit is set		ʻ0' = Bit is clea	ared							

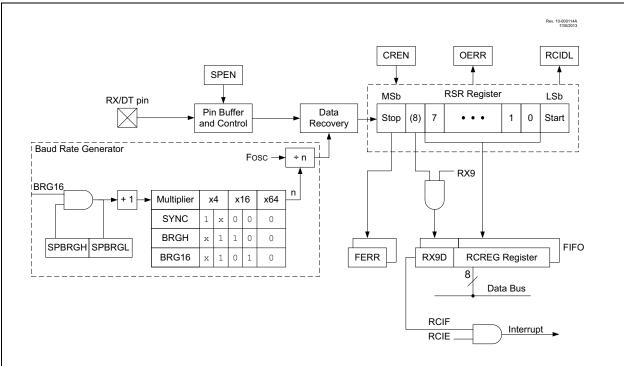
REGISTER 11-5: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up Register bits⁽³⁾ 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

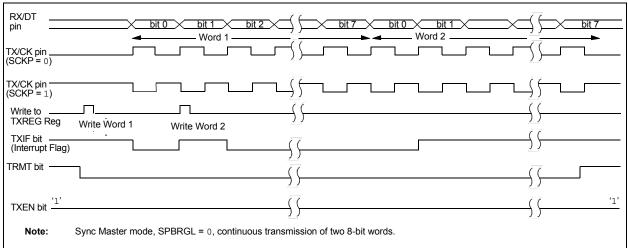
- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- **3:** For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.


REGISTER 11-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—			ODA4	—	ODA2	ODA1	ODA0
bit 7							bit 0

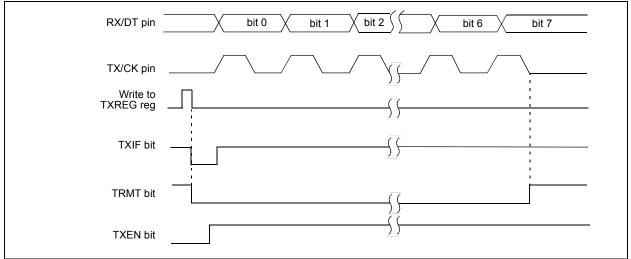
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)



The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)


These registers are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

FIGURE 22-10: SYNCHRONOUS TRANSMISSION

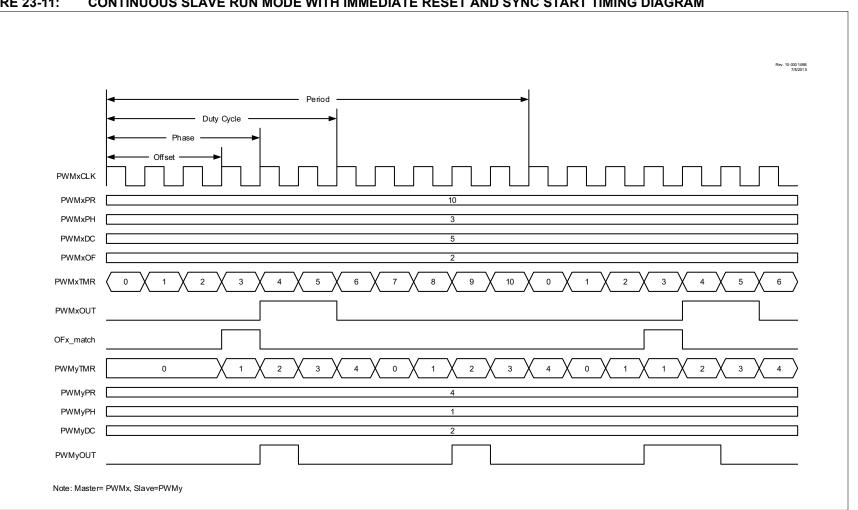


TABLE 22-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
SPBRGL				BRG	<7:0>				205*
SPBRGH	BRG<15:8>								
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202
	•		•	-		•	-		•

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

PIC16(L)F1574/5/8/9

	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
_	OF	VI<1:0>	OFO ⁽¹⁾	_	_	OFS	<1:0>			
bit 7							bit C			
Legend:										
R = Readab	le bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'				
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BC	R/Value at all	other Resets			
1' = Bit is s	et	'0' = Bit is clea	red							
bit 7	Unimpleme	nted: Read as '0)'							
bit 6-5	OFM<1:0>:	Offset Mode Sel	ect bits							
	11 = Continu	uous Slave Run	mode with Imn	nediate Reset a	and synchroniz	zed start, wher	n the selecte			
		Offset Trigger occurs.								
		ot Slave Run mo								
		ndent Slave Run	•	chronized start	, when the sele	ected Offset Tr	igger occurs			
	•	ndent Run mode								
bit 4			ontrol bit	4 OFO: Offset Match Output Control bit						
	If MODE<1:0> = 11 (PWM Center-Aligned mode):									
					· · · · · · · · · · · · · · · · · · ·					
	1 = OFx_ma	atch occurs on co	ounter match w	hen counter de						
	$1 = OFx_ma$ $0 = OFx_ma$	atch occurs on co atch occurs on co	ounter match w	hen counter de hen counter inc						
	1 = OFx_ma 0 = OFx_ma If MODE<1:0	atch occurs on co atch occurs on co 0 > = 00, 01 or	ounter match w	hen counter de hen counter inc						
bit 3-2	1 = OFx_ma 0 = OFx_ma <u>If MODE<1:(</u> bit is ignored	atch occurs on co atch occurs on co D = 00, 01 or	ounter match w ounter match w 10 (all other mo	hen counter de hen counter inc						
	1 = OFx_ma 0 = OFx_ma <u>If MODE<1:(</u> bit is ignored Unimpleme	atch occurs on co atch occurs on co <u>D = 00, 01 or</u> 1 nted: Read as '0	punter match w punter match w 10 <u>(all other mo</u>	rhen counter de rhen counter inc odes):						
bit 3-2 bit 1-0	1 = OFx_ma 0 = OFx_ma <u>If MODE<1:(</u> bit is ignored Unimplemen OFS<1:0>: (atch occurs on co atch occurs on co <u>D = 00, 01 or</u> I nted: Read as '0 Offset Trigger Sc	punter match w punter match w 10 <u>(all other mo</u>	rhen counter de rhen counter inc odes):						
	1 = OFx_ma 0 = OFx_ma <u>If MODE<1:(</u> bit is ignored Unimplemen OFS<1:0>: (11 = OF4_r	atch occurs on co atch occurs on co D = 00, 01 or d nted: Read as '0 Offset Trigger Sc natch ⁽¹⁾	punter match w punter match w 10 <u>(all other mo</u>	rhen counter de rhen counter inc odes):						
	1 = OFx_ma 0 = OFx_ma <u>If MODE<1:(</u> bit is ignored Unimpleme OFS<1:0>: (atch occurs on co atch occurs on co D = 00, 01 or f nted: Read as '0 Offset Trigger Sc natch ⁽¹⁾ natch ⁽¹⁾	punter match w punter match w 10 <u>(all other mo</u>	rhen counter de rhen counter inc odes):						

REGISTER 23-6: PWMxOFCON: PWM OFFSET TRIGGER SOURCE SELECT REGISTER

Note 1: The OF_match corresponding to the PWM used becomes reserved.

24.12 Register Definitions: CWG Control

					-		
R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN			GxPOLB	GxPOLA	—		GxCS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value der	pends on conditi	on	
bit 7 GxEN: CWGx Enable bit 1 = Module is enabled 0 = Module is disabledbit 6-5 Unimplemented : Read as '0'bit 4 GxPOLB: CWGxB Output Polarity bit 1 = Output is inverted polarity 0 = Output is normal polarity							
bit 3 GxPOLA: CWGxA Output Polarity bit 1 = Output is inverted polarity 0 = Output is normal polarity							
bit 2-1	Unimplemen	ted: Read as 'o)'				
bit 2-1 Unimplemented: Read as '0' bit 0 GxCS0: CWGx Clock Source Select bit 1 = HFINTOSC 0 = Fosc							

REGISTER 24-1: CWGxCON0: CWG CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	121
CWG1CON0	G1EN	—	—	G1POLB	G1POLA	_	—	G1CS0	253
CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	—	G1IS<2:0>			254
CWG1CON2	G1ASE	G1ARSEN	_	_	G1ASDSC2	G1ASDSC1	G1ASDSPPS	—	255
CWG1DBF	_	_			CW	256			
CWG1DBR	_	_			CW	WG1DBR<5:0>			256
TRISA		—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	120

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG. **Note 1:** Unimplemented, read as '1'.

Mnemonic, Operands			Ì	14-Bit Opcode				Status	
		Description	Description Cycles		Sb LSb			Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS	•					
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	•
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	lnmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

PIC16(L)F1574/5/8/9

ΜΟνωι	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\to INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR - 1 \ (\text{predecrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR - 1 \ (\text{all decrements}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \to OPTION_REG$				
Status Affected:	None				
Description:	Move data from W register to OPTION_REG register.				

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

27.3 DC Characteristics

TABLE 27-1:SUPPLY VOLTAGE

PIC16LF	1574/5/8/9	1	Standard Operating Conditions (unless otherwise stated)					
PIC16F1	574/5/8/9							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					·	
			1.5	_	_	V	Device in Sleep mode	
D002*			1.7	_	_	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage	2)					
			—	1.6	—	V		
D002A*			—	1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾						
			—	0.8	—	V		
D002B*			—	1.5	—	V		
D003	VFVR	Fixed Voltage Reference Voltage	—	1.024	_	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-4 -4 -5	_	4 4 5	%	$ \begin{array}{l} 1x \; VFvR, \; ADFVR = 01, \; VDD \geq 2.5V \\ 2x \; VFvR, \; ADFVR = 10, \; VDD \geq 2.5V \\ 4x \; VFvR, \; ADFVR = 11, \; VDD \geq 4.75V \end{array} $	
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator	-4 -4 -5	—	4 4 5	%	1x VFVR, CDAFVR = 01, VDD \geq 2.5V 2x VFVR, CDAFVR = 10, VDD \geq 2.5V 4x VFVR, CDAFVR = 11, VDD \geq 4.75V	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

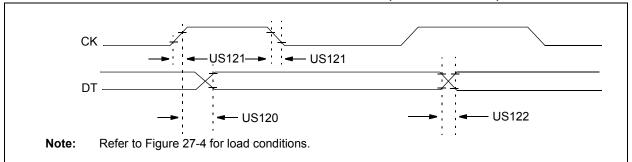
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 27-3, POR and POR REARM with Slow Rising VDD.

3: PLL required for 32 MHz operation.

TABLE 27-4: I/O PORTS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D030		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D030A			_		0.15 VDD	V	$1.8V \le V \text{DD} \le 4.5V$		
D031		with Schmitt Trigger buffer	_		0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$		
		with I ² C levels	_	_	0.3 Vdd	V			
		with SMbus levels	_	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$		
D032		MCLR	_		0.2 VDD	V			
	VIH	Input High Voltage				•	•		
		I/O PORT:							
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD + 0.8	_	-	V	$1.8V \le V\text{DD} \le 4.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	_	—	V	$2.0V \le V \text{DD} \le 5.5 V$		
	with I ² C levels	0.7 Vdd	_	—	V				
		with SMbus levels	2.1	_	—	V	$2.7V \le V\text{DD} \le 5.5V$		
D042		MCLR	0.8 Vdd	_	—	V			
	lı∟	Input Leakage Current ⁽¹⁾					·		
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C		
			—	± 5	± 1000	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 125°C		
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 85°C		
	IPUR	Weak Pull-up Current					·		
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS		
			25	140	300	μA	VDD = 5.0V, VPIN = VSS		
	Vol	Output Low Voltage							
D080		I/O Ports	_	_	0.6	v	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V		
	Voн	Output High Voltage				1	1		
D090		I/O Ports	Vdd - 0.7	_	_	v	Іон = 3.5 mA, VDD = 5V Іон = 3 mA, VDD = 3.3V Іон = 1 mA, VDD = 1.8V		
		Capacitive Loading Specificat	tions on Out	out Pins		1	1		
D101A*	CIO	All I/O pins	_	_	50	pF			


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

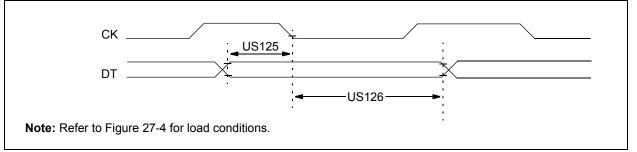

FIGURE 27-13: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-17: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 To	ТскН2ртV	SYNC XMIT (Master and Slave) Clock high to data-out valid	_	80	ns	$3.0V \le V\text{DD} \le 5.5V$
			—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF Clock out rise time and fall time	Clock out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)	— 50	50	ns	$1.8V \le V\text{DD} \le 5.5V$
US122	TDTRF Data-out rise tim	Data-out rise time and fall time	—	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \le V\text{DD} \le 5.5V$

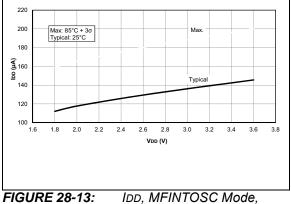

FIGURE 27-14: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-18: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10	_	ns		
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns		

PIC16(L)F1574/5/8/9

Fosc = 500 kHz, PIC16LF1574/5/8/9 Only.

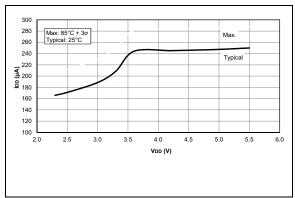
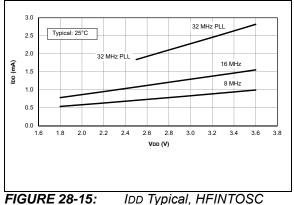



FIGURE 28-14: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1574/5/8/9 Only.

Mode, PIC16LF1574/5/8/9 Only.

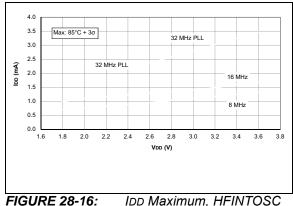


FIGURE 28-16: IDD Maximum, HFINTOSC Mode, PIC16LF1574/5/8/9 Only.

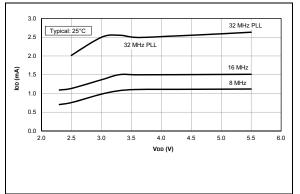


FIGURE 28-17: IDD Typical, HFINTOSC Mode, PIC16F1574/5/8/9 Only.

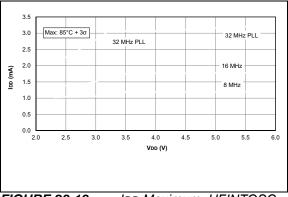
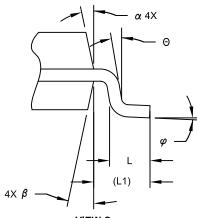
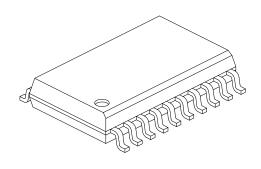
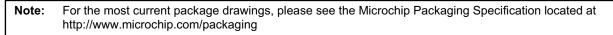




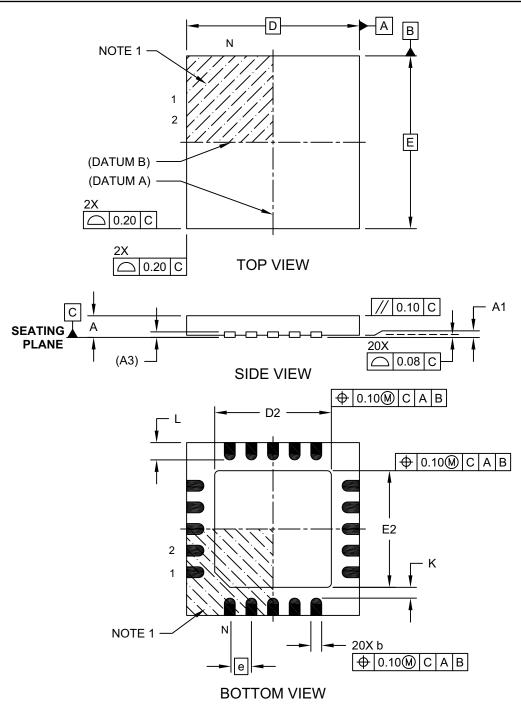
FIGURE 28-18: IDD Maximum, HFINTOSC Mode, PIC16F1574/5/8/9 Only.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VI	EW	С	


l	MILLIMETERS					
Dimension Lim	its	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	1.27 BSC				
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2