

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1574-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Peripherals

- 10-Bit Analog-to-Digital Converter (ADC):
 - Up to 12 external channels
 - Conversion available during Sleep
- Two Comparators:
 - Low-Power/High-Speed modes
 - Fixed Voltage Reference at (non)inverting input(s)
 - Comparator outputs externally accessible
 - Synchronization with Timer1 clock source
 - Software hysteresis enable
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:

TABLE 1:

- Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

Clocking Structure

- Precision Internal Oscillator:
 - Factory calibrated ±1%, typical
 - Software-selectable clock speeds from 31 kHz to 32 MHz
- · External Oscillator Block with:
 - Two external clock modes up to 32 MHz
- Digital Oscillator Input Available

Program Flash Memory Memory 8-Bit/16-Bit Timers SRAM (bytes) Data Sheet Index I0-Bit ADC (ch) Comparators **I6-Bit PWM** Bit DAC Debug⁽¹⁾ (Kwords) Pins (Kbytes) EUSART Program Flash CWG PPS Device <u>0</u> Data PIC12(L)F1571 1.75 2/4(2) 128 6 1 3 4 1 1 0 Ν Ι (A) 1 2/4(2) PIC12(L)F1572 (A) 2 3.5 256 6 1 3 4 1 1 1 Ν L 2/5(3)PIC16(L)F1574 12 2 (B) 4 7 512 4 8 1 1 1 Y Т 2/5(3) PIC16(L)F1575 8 14 1024 12 2 4 8 1 1 1 Y I (B) 2/5⁽³⁾ PIC16(L)F1578 (B) 4 7 512 18 2 4 12 1 1 1 Y L 2/5(3) PIC16(L)F1579 8 14 18 2 12 1 Y (B) 1024 4 1 1 Т

Note 1: I – Debugging integrated on chip.

2: Three additional 16-bit timers available when not using the 16-bit PWM outputs.

PIC12(L)F1571/2 AND PIC16(L)F1574/5/8/9 FAMILY TYPES

3: Four additional 16-bit timers available when not using the 16-bit PWM outputs.

Data Sheet Index:

- A) DS-40001723 PIC12(L)F1571/2 Data Sheet, 8-Pin Flash, 8-bit MCU with High-Precision 16-bit PWM
- B) Future Release PIC16(L)F1574/5/8/9 Data Sheet, 8-Pin Flash, 8-bit MCU with High-Precision 16-bit PWM

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-14.

	CODE DECISTEDS
IABLE 3-2:	CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 3-11: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 27

		Bank 27	
	D8Ch		
	D8Dh	—	
	D8Eh	PWMEN	
	D8Fh	PWMLD	
	D90h	PWMOUT	
	D91h	PWM1PHL	
	D92h	PWM1PHH	
	D93h	PWM1DCL	
	D94h	PWM1DCH	
	D95h	PWM1PRL	
	D96h	PWM1PRH	
	D97h	PWM10FL	
	D98h	PWM10FH	
	D99h	PWM1TMRI	
	DOON	PWM1TMRH	
	DORH	PWM1CON	
	DaCh	PWM1INTE	
	DOOP		
	DaDu		
	D9Eh		
	D9Fn	PWWILDCON	
	DAUN	PWWIDFCON	
	DA1h	PWW2PHL	
	DA2h	PWW2PHH	
	DA3h	PWM2DCL	
	DA4h	PWM2DCH	
	DA5h	PWM2PRL	
	DA6h	PWM2PRH	
	DA7h	PWM2OFL	
	DA8h	PWM2OFH	
	DA9h	PWM2TMRL	
	DAAh	PWM2TMRH	
	DABh	PWM2CON	
	DACh	PWM2INTE	
	DADh	PWM2INTF	
	DAEh	PWM2CLKCON	
	DAFh	PWM2LDCON	
	DB0h	PWM2OFCON	
	DB1h	PWM3PHL	
	DB2h	PWM3PHH	
	DB3h	PWM3DCL	
	DB4h	PWM3DCH	
	DB5h	PWM3PRL	
	DB6h	PWM3PRH	
	DB7h	PWM30FL	
	DB8h	PWM30FH	
	DB9h	PWM3TMRL	
	DBAh	PWM3TMRH	
	DBBh	PWM3CON	
	DBCh	PWM3INTE	
	DBDh	PWM3INTF	
	DBEh	PWM3CLKCON	
	DBFh	PWM3LDCON	
	DC0h	PWM30FC0N	
	DC1h	PWM4PHI	
	DC2h	PWM4PHH	
	DC2h		
	DC4II DC5h		
	DCSI		
	DC/n		
	DC9h		
	DCAh		
	DCBh	PWW4CON	
	DCCh	PWW4IN1E	
	DCDh	PWM4INTF	
	DCEh	PWM4CLKCON	
	DCFh	PWM4LDCON	
	DD0h	PWM40FC0N	
	DD1h		
	DEFh	—	
Logendy	= L Inimr	lemented data momony l	ocations read as 'o'
Legenu.	- 011114	semented data memory i	Jourions, 10au as 0.

TABLE 3-12: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 28-29 MAP

	Bank 28		Bank 29
E0Ch	—	E8Ch	_
E0Dh	_	E8Dh	_
E0Eh	_	E8Eh	_
E0Fh	PPSLOCK	E8Fh	_
E10h	INTPPS	E90h	RA0PPS
F11h	TOCKIPPS	F91h	RA1PPS
E12h	TICKIPPS	E92h	RA2PPS
E13h	TIGPPS	F03h	
E14h	CWG1PPS	E0/h	PA/PPS
E15h	DVDDS	E05h	DA5DDS
E16h	CKPPS	Egen	-
		EOTh	
E19b	ADCACIFF3	Eagh	—
E10h		EOOh	
		EQAN	
		EORh	—
		Eapli	
E1Ch	_	E9Ch	RB4PPS(')
E1Dh		E9Dh	RB5PPS ⁽¹⁾
E1Eh	_	E9Eh	RB6PPS ⁽¹⁾
F1Fh	_	FOFh	RB7PPS(1)
E20h	_	FAOh	RCOPPS
E21h		EA1h	RC1PPS
E22h		EA2h	RC2PPS
E22h		EA2h	PC3PPS
E24h		EA4h	PC/PPS
E25h		EASh	
E2011		EASI	
E26N	_	EAGU	RC6PPS(")
E27h		EA7h	RC7PPS(")
E28h	_	EA8h	—
E29h	_	EA9h	—
E2Ah	_	EAAh	—
E2Bh	—	EABh	—
E2Ch	_	EACh	—
E2Dh	_	EADh	—
E2Eh	—	EAEh	—
E2Fh	_	EAFh	—
E30h	_	EB0h	—
E31h	—	EB1h	—
E32h		EB2h	—
E33h	_	EB3h	_
E34h	_	EB4h	_
E35h		EB5h	_
E36h		EB6h	_
E37h	_	EB7h	_
E38h		EB8h	_
E39h		EB9h	
E3Ah		EBAh	
E3Bh	—	EBBh	_
E3Ch	_	EBCh	_
E3Dh	_	EBDh	_
E3Eh	_	EBEh	_
E3Fh		EBFh	_
E40h		EC0h	
	_		—
E6Fh		EEFh	
l egend:	= Unimpleme	nted data	memory locations

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardw	vare	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PIE1	TMR1GIE	ADIE	RCIE	TXIE		—	TMR2IE	TMR1IE	87
PIE2	_	C2IE	C1IE	_		—	—	_	88
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE		—	—	_	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF		—	TMR2IF	TMR1IF	90
PIR2	_	C2IF	C1IF	_	_	_	_	_	91
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	92

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- Operation during Sleep

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

	U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/a ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	
	_(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD	
bit 7					11		1	bit 0	
Legei	nd:								
R = R	leada	ble bit	W = Writable b	it	U = Unimpleme	ented bit, read as	ʻ0'		
S = B	it can	only be set	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	/alue at all other I	Resets	
'1' = E	Bit is s	set	'0' = Bit is clear	red	HC = Bit is clea	red by hardware			
bit 7		Unimplemen	ted: Read as '1'						
bit 6		CFGS: Config	guration Select bit						
		1 = Access(Configuration, Use	er ID and Device	e ID Registers				
6:4 F		0 = Access F	-lash program me	mory					
DIES		1 = Only the	addressed progra	y Dit ^e	e latch is loaded/	undated on the r	ext WR comman	d	
		0 = The add	ressed program m	emory write latc	h is loaded/updat	ed and a write of	all program mem	ory write latches	
		will be in	itiated on the next	t WR command					
bit 4		FREE: Progra	am Flash Erase Ei	nable bit					
		1 = Performs	s an erase operati	on on the next V	VR command (ha	ardware cleared	upon completion))	
		0 = Performs	s an write operatio	on on the next W	/R command				
bit 3		WRERR: Pro	gram/Erase Error	Flag bit ⁽²⁾	or orono ooguon	a attampt or ta	mination (hit is a	at automatically	
		on any s	et attempt (write	1') of the WR bit	t).	ce allempt of lei		et automatically	
		0 = The prog	gram or erase ope	ration complete	d normally.				
bit 2		WREN: Progr	am/Erase Enable	bit					
		1 = Allows p	rogram/erase cyc	es					
		0 = Inhibits p	programming/eras	ing of program I	lash				
bit 1		WR: Write Co	ontrol bit	roarom/orooo o	noration				
		⊥ = Initiates	a program Flash p ration is self-timed	and the bit is c	peration. leared by hardwa	re once operatio	n is complete		
		The WR	bit can only be se	et (not cleared) in	n software.		in to complete.		
		0 = Program/erase operation to the Flash is complete and inactive.							
bit 0		RD: Read Co	ntrol bit						
		1 = Initiates	a program Flash r	ead. Read takes	s one cycle. RD is	s cleared in hard	ware. The RD bit	can only be set	
	(not cleared) in software.								
Note	1:	Unimplemented bit	read as '1'.						
	2:	The WRERR bit is a	automatically set t	by hardware whe	en a program me	mory write or era	se operation is st	tarted (WR = 1).	
	3.	The LWL O bit is iar	LWLO bit is ignored during a program memory erace operation (EPEE = 1)						

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	132
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	133
LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	131
ODCONC	ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	133
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	131
SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	133
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	132

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: PIC16(L)F1578/9 only.

18.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.6 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

18.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward-biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
CxINTP	CxINTN	CxINTN CxPCH<1:0>		_		CxNCH<2:0>		
bit 7		•		·			bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	OR/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
L:1 7								
DIT /	CXINIP: Con	interrunt flag	ipt on Positive	Going Edge E	nable bits			
	0 = No interr	upt flag will be	set on a positiv	ve going edge	of the CxOUT	bit		
bit 6	CxINTN: Con	(INTN: Comparator Interrupt on Negative Going Edge Enable bits						
	1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit							
	0 = No interrupt flag will be set on a negative going edge of the CxOUT bit							
bit 5-4	CxPCH<1:0>	CxPCH<1:0>: Comparator Positive Input Channel Select bits						
	11 = CxVP connects to Vss							
	01 = CxVP connects to DAC Voltage Reference							
	00 = CxVP co	onnects to CxII	N+ pin					
bit 3	Unimplemented: Read as '0'							
bit 2-0	CxNCH<1:0>	: Comparator I	Negative Input	Channel Sele	ct bits			
	111 = CxVN	connects to GI	ND					
	110 = CxVN	connects to F	R Voltage Ref	erence				
	101 = Reser 100 = Reser	ved ved						
	011 = CxVN	connects to C	dN3- pin					
	010 = CxVN	connects to C>	dN2- pin					
	001 = CxVN	connects to C	dN1- pin					
	000 = GXVN connects to GXINU- pin							

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	_	—	—	—	—	MC2OUT	MC10UT
bit 7				•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

22.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 22-3 contains the formulas for determining the baud rate. Example 22-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 22-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 22-1: CALCULATING BAUD **RATE ERROR**

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Fosc Desired Baud Rate = $\frac{1}{64([SPBRGH:SPBRGL] + 1)}$ Solving for SPBRGH:SPBRGL: FOSC $X = \frac{Desired Baud Rate}{-1}$ 64 16000000 = [25.042] = 25 Calculated Baud Rate = $\frac{10000000}{64(25+1)}$ 16000000 = 9615 $Error = \frac{Calc. Baud Rate - Desired}{Baud Rate}$ Desired Baud Rate $= \frac{(9615 - 9600)}{2000} = 0.16\%$

9600

22.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

22.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

22.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

22.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

22.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 22.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 23-7: PWMxPHH: PWMx PHASE COUNT HIGH REGISTER

bit 7-0 **PH<15:8>**: PWM Phase High bits Upper eight bits of PWM phase count

REGISTER 23-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PH< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PH<7:0>**: PWM Phase Low bits Lower eight bits of PWM phase count

Г

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k - (W) \rightarrow (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.				
	C = 0 W > k				
	$C = 1$ $W \le k$				
	DC = 0 W<3:0> k<3:0>				

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W	/ from f				
Syntax:	[label] SL	JBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Subtract (2's register from result is store register. If 'd' back in regist	complement method) W register 'f'. If 'd' is '0', the ed in the W is '1', the result is stored ter 'f.				
	C = 0	W > f				
	C = 1	$W \leq f$				
	DC = 0	W<3:0> > f<3:0>				
	DC = 1	W<3:0> ≤ f<3:0>				

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

TABLE 27-14: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)											
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based				
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = $x11$ (ADC FRC mode)				
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—	11	—	TAD	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	-	5.0		μS					
AD133*	THCD	Holding Capacitor Disconnect Time	_	1/2 TAD 1/2 TAD + 1TCY	_		Fosc-based ADCS<2:0> = x11 (ADC FRC mode)				
* These parameters are characterized but not tested											

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 28-73: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 3.6V, LF Devices Only.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

30.0 PACKAGING INFORMATION

30.1 **Package Marking Information**

14-Lead PDIP (300 mil)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ -	×	<u>/xx</u>	<u>xxx</u>	Ex	amp	oles:	
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a)	Pl Ta In Si	IC16LF1578T - I/SO ape and Reel, dustrial temperature, OIC package	
Device:	PIC16LF1574, PIC16LF1578,	PIC16LF1574, PIC16F1574, PIC16LF1575, PIC16F1575 PIC16LF1578, PIC16F1578, PIC16LF1579, PIC16F1579				Pi In Pi Pi	PIC16F1575 - I/P Industrial temperature PDIP package PIC16LF1574-E/JQ	
Tape and Reel Option:	Blank = Stand T = Tape	dard packaging (and Reel ⁽¹⁾	tube or tray)			E: U	.xtended Temperature IQFN Package	
Temperature Range:	$I = -40^{\circ}$ E = -40^{\circ}	°C to +85°C °C to +125°C	(Industrial) (Extended)					
Package: ⁽²⁾	GZ = UQF JQ = UQF P = Plas SL = SOI SO = SOI SS = SSO ST = TSS	EN, 20-Lead (4x4 EN, 16-Lead (4x4 stic DIP C, 14-Lead C, 20-Lead DP, 20-Lead SOP, 14-Lead	4x0.5mm) 4x0.5mm)		No	te 1: 2:	 Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package 	
Pattern:	QTP, SQTP, Co (blank otherwis	ode or Special R e)	equirements				availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.	