

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·><Fl

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1574t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 26.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u			
	_	—	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition						

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For $\overline{\text{Borrow}}$ the polarity is reversed. A subtraction is executed by adding the two's complement of the

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

TABLE 3-5: PIC16(L)F1578 MEMORY MAP, BANKS 0-7

	BANK0		, BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	-	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	—
010h	_	090h	_	110h	_	190h	_	210h	_	290h	_	310h	_	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	—	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	_	313h	—	393h	IOCAF
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h		396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	_	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah		39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh		39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh		09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh		39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh	_	39Fh	_
020h	General Purpose	0A0h	General Purpose	120h	General Purpose	1A0h	General Purpose	220h	General Purpose	2A0h	General Purpose	320h 32Fh 330h	General Purpose Register 16 Bytes	3A0h	Unimplemented Read as '0'
06Fh	Register 80 Bytes	0EFh	Register 80 Bytes	16Fh	Register 80 Bytes	1EFh	Register 80 Bytes	26Fh	Register 80 Bytes	2EFh	Register 80 Bytes	36Fh	Unimplemented Read as '0'	3EFh	Read as 0
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
0.011	Common RAM	5. 611	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh	2.011	Accesses 70h – 7Fh	2. 011	Accesses 70h – 7Fh	0.011	Accesses 70h – 7Fh	5. 0.1	Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1578.

TABLE 3-11: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 27

	MAP, BANK 27	
	Bank 27	
D8Ch	_	
D8Dh	 PWMEN	
D8Eh D8Fh	PWMLD	
D90h	PWMOUT	
D91h	PWM1PHL	
D92h	PWM1PHH	
D93h	PWM1DCL	
D94h	PWM1DCH PWM1PRL	
D95h D96h	PWMIPRL PWM1PRH	
D9011 D97h	PWM10FL	
D98h	PWM10FH	
D99h	PWM1TMRL	
D9Ah	PWM1TMRH	
D9Bh	PWM1CON	
D9Ch D9Dh	PWM1INTE PWM1INTF	
D9Dh D9Eh	PWM1CLKCON	
D9Eh D9Fh	PWM1LDCON	
DA0h	PWM10FC0N	
DA1h	PWM2PHL	
DA2h	PWM2PHH	
DA3h	PWM2DCL PWM2DCH	
DA4h DA5h	PWM2DCH PWM2PRL	
DA6h	PWM2PRH	
DA7h	PWM2OFL	
DA8h	PWM2OFH	
DA9h	PWM2TMRL	
DAAh	PWM2TMRH	
DABh	PWM2CON PWM2INTE	
DACh DADh	PWM2INTE PWM2INTF	
DADh	PWM2CLKCON	
DAFh	PWM2LDCON	
DB0h	PWM2OFCON	
DB1h	PWM3PHL	
DB2h	PWM3PHH PWM3DCL	
DB3h DB4h	PWM3DCL PWM3DCH	
DB4II DB5h	PWM3PRL	
DB6h	PWM3PRH	
DB7h	PWM3OFL	
DB8h	PWM30FH	
DB9h	PWM3TMRL	
DBAh	PWM3TMRH PWM3CON	
DBBh DBCh	PWM3INTE	
DBDh	PWM3INTF	
DBEh	PWM3CLKCON	
DBFh	PWM3LDCON	
DC0h	PWM3OFCON	
DC1h	PWM4PHL PWM4PHH	
DC2h DC3h	PWM4PHH PWM4DCL	
DC4h	PWM4DCH	
DC5h	PWM4PRL	
DC6h	PWM4PRH	
DC7h	PWM40FL	
DC8h	PWM40FH	
DC9h	PWM4TMRL	
DCAh	PWM4TMRH PWM4CON	
DCBh DCCh	PWM4CON PWM4INTE	
DCCh	PWM4INTE PWM4INTF	
DCEh	PWM4CLKCON	
DCFh	PWM4LDCON	
DD0h	PWM40FC0N	
DD1h		
DEFh	—	
Legend: = Unimp	plemented data memory l	ocations, read as '0'.

TABLE 3-12: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 28-29 MAP

			.0-23
	Bank 28	_	Bank 29
E0Ch	_	E8Ch	—
E0Dh	—	E8Dh	—
E0Eh	—	E8Eh	—
E0Fh	PPSLOCK	E8Fh	—
E10h	INTPPS	E90h	RA0PPS
E11h	TOCKIPPS	E91h	RA1PPS
E12h	T1CKIPPS	E92h	RA2PPS
			104211-0
E13h	T1GPPS	E93h	-
E14h	CWG1PPS	E94h	RA4PPS
E15h	RXPPS	E95h	RA5PPS
E16h	CKPPS	E96h	_
E17h	ADCACTPPS	E97h	_
E18h	_	E98h	
E19h	_	E99h	_
E1Ah		E9Ah	
E1Bh		E9Bh	—
E1Ch	_	E9Ch	RB4PPS ⁽¹⁾
E1Dh	-	E9Dh	RB5PPS ⁽¹⁾
	-		RB6PPS ⁽¹⁾
E1Eh		E9Eh	
E1Fh		E9Fh	RB7PPS ⁽¹⁾
E20h	_	EA0h	RC0PPS
E21h	_	EA1h	RC1PPS
E22h		EA2h	RC2PPS
E23h		EA3h	RC3PPS
		-	
E24h	_	EA4h	RC4PPS
E25h		EA5h	RC5PPS
E26h	_	EA6h	RC6PPS ⁽¹⁾
E27h		EA7h	RC7PPS ⁽¹⁾
			KUTFF3.
E28h		EA8h	
E29h	_	EA9h	—
E2Ah		EAAh	
E2Bh		EABh	—
E2Ch		EACh	_
E2Dh		EADh	
E2Eh		EAEh	
E2Fh		EAFh	—
E30h	_	EB0h	—
E31h	_	EB1h	_
E32h	_	EB2h	—
E33h		EB3h	
E34h		EB4h	_
E35h		EB5h	
E36h		EB5h	
			_
E37h		EB7h	—
E38h		EB8h	—
E39h	_	EB9h]
E3Ah		EBAh	
E3Bh		EBBh	_
E3Ch		EBCh	
E3Dh		EBDh	—
E3Eh		EBEh	—
E3Fh		EBFh	—
E40h		EC0h	
	_		_
E6Fh		EEFh	
Legend:	= Unimpleme	1	memory locations,
	read as '0'		
lote 1:	Unimplemented on	PIC16(L))F1574/5.

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

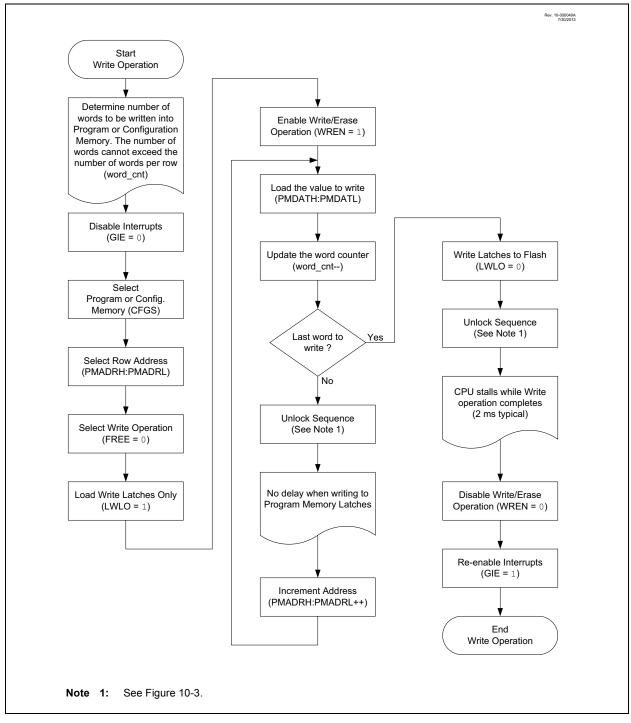
See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input. CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has three power modes to select from through the Fosc bits in the Configuration Words:

- ECH High power, 4-20 MHz
- ECM Medium power, 0.5-4 MHz
- ECL Low power, 0-0.5 MHz


The Oscillator Start-up Timer (OST), when available, is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-On Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

© 2016 Microchip Technology Inc.

11.1 PORTA Registers

11.1.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as '1'. Example 11-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 11-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.1.2 DIRECTION CONTROL

The TRISA register (Register 11-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.1.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 11-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.1.4 SLEW RATE CONTROL

The SLRCONA register (Register 11-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.1.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 11-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.1.6 ANALOG CONTROL

The ANSELA register (Register 11-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

```
; This code example illustrates
; initializig the PORTA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTA
                     ;
CLRF
         PORTA
                     ;Init PORTA
BANKSEL LATA
                     ;Data Latch
CLRF
        T.ATA
                     ;
BANKSEL ANSELA
                     ;
CLRF
        ANSELA
                     ;digital I/O
BANKSEL TRISA
MOVLW
        B'00111000' ;Set RA<5:3> as inputs
MOVWF
        TRISA
                     ;and set RA<2:0> as
                     ;outputs
```

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 16.0 "Analog-to-Digital Converter** (**ADC**) **Module**" for additional information.

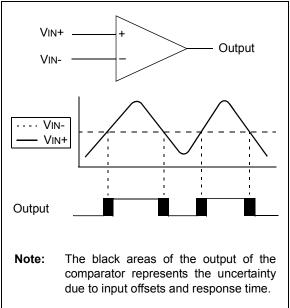
The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 18.0 "Comparator Module"** for additional information.


To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

14.2 FVR Stabilization Period

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.


FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1574/5/8/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

FIGURE 18-2: SINGLE COMPARATOR

18.2 Comparator Control

The comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- · Output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC1_output
- FVR_buffer2
- Vss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

Complementary Waveform Generator (CWG)

Note: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

20.6 Timer1 Interrupt

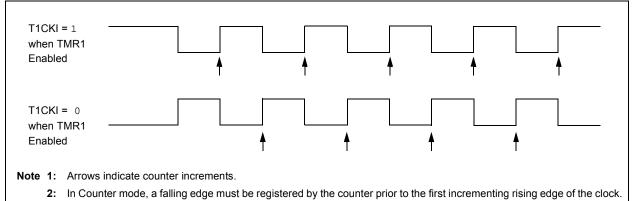
The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

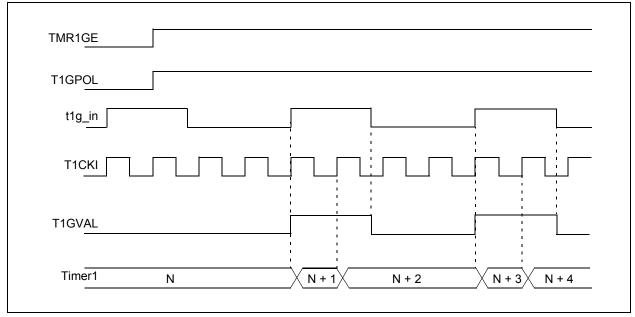
The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

20.7 Timer1 Operation During Sleep


Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- · TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured


The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

FIGURE 20-3: TIMER1 GATE ENABLE MODE

FIGURE 22-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	·0'
RCIF bit (Interrupt)	
Read RCREG	ŕ
Note: Timing dia	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

~

TABLE 22-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	204	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	_	TMR2IF	TMR1IF	90	
RCREG			EUS	ART Receiv	ve Data Reg	gister			197*	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203	
SPBRGL	BRG<7:0>									
SPBRGH		BRG<15:8>								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

Page provides register information. *

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRC	F<3:0>	•	_	SCS	<1:0>	69	
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	_				89	
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	92	
PWMEN	-	—	—	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	243	
PWMLD	_	_	_	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	243	
PWMOUT	_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	243	
PWM1PHL				F	PH<7:0>	. –	. –		238	
PWM1PHH	PH<15:8>									
PWM1DCL	DC<7:0>									
PWM1DCH	DC<15:8>									
PWM1PRL				F	PR<7:0>				240	
PWM1PRH				Р	R<15:8>				240	
PWM10FL)F<7:0>				241	
PWM10FH					F<15:8>				241	
PWM1TMRL					MR<7:0>				242	
PWM1TMRH					IR<15:8>				242	
PWM1CON	EN	_	OUT	POL	T	E<1:0>	_	_	233	
PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	233	
PWM1INTF					OFIE	PHIF	DCIF	PRIF	234	
PWM1CLKCON			PS<2:0>		-		-	:1:0>	235	
PWM1CLRCON PWM1LDCON	LDA	LDT	F 3 2.02					<1:0>	235	
PWM10FCON	LDA	OFM	<1:0>	OFO			-	<1:0>	230	
		OTIV	<1.02		 PH<7:0>	—	013	<1.02	237	
PWM2PHL					H<15:8>					
PWM2PHH									238	
PWM2DCL)C<7:0>				239	
PWM2DCH					C<15:8>				239	
PWM2PRL					PR<7:0>				240	
PWM2PRH					R<15:8>				240	
PWM2OFL)F<7:0>				241	
PWM2OFH					F<15:8>				241	
PWM2TMRL					VIR<7:0>				242	
PWM2TMRH				-	1R<15:8>				242	
PWM2CON	EN	—	OUT	POL		E<1:0>	-	-	233	
PWM2INTE		_	—		OFIE	PHIE	DCIE	PRIE	234	
PWM2INTF				—	OFIF	PHIF	DCIF	PRIF	234	
PWM2CLKCON	—		PS<2:0>		_	—	-	<1:0>	235	
PWM2LDCON	LDA	LDT	—	-	_	_	-	<1:0>	236	
PWM2OFCON	—	OFM	<1:0>	OFO	-	—	OFS	<1:0>	237	
PWM3PHL					PH<7:0>				238	
PWM3PHH					H<15:8>				238	
PWM3DCL)C<7:0>				239	
PWM3DCH					C<15:8>				239	
PWM3PRL					PR<7:0>				240	
PWM3PRH					R<15:8>				240	
PWM3OFL)F<7:0>				241	
PWM3OFH				0	F<15:8>				241	
PWM3TMRL				T	VIR<7:0>				242	
PWM3TMRH			1	TN	1R<15:8>				242	
PWM3CON	EN	—	OUT	POL	MODE	=<1:0>	—	—	233	
PWM3INTE	_	—	—	—	OFIE	PHIE	DCIE	PRIE	234	
PWM3INTF	_	_	—		OFIF	PHIF	DCIF	PRIF	234	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

	D 444 676				5 4 4 6 40						
R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0				
GxASE	GxARSEN		—	GxASDSC2	GxASDSC1	GxASDSPPS					
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	e bit	U = Unimpler	nented bit, read	as '0'					
u = Bit is unc	hanged	x = Bit is unl	known	-n/n = Value a	at POR and BO	R/Value at all othe	er Resets				
'1' = Bit is set	t	'0' = Bit is cl	eared	q = Value dep	pends on condit	ion					
bit 7 bit 6	1 = An auto- 0 = No auto- GxARSEN: A 1 = Auto-res	GxASE: Auto-Shutdown Event Status bit 1 = An auto-shutdown event has occurred 0 = No auto-shutdown event has occurred GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled									
bit 5-4	Unimplemer	nted: Read as	'0'								
bit 3	1 = Shutdow	n when Comp	arator C2 ou	comparator C2 I tput (C2OUT_s t on shutdown							
bit 2	1 = Shutdow	n when Comp	arator C1 ou	comparator C1 I tput (C1OUT_s t on shutdown							
bit 1	1 = Shutdow	GxASDSPPS: CWG Input Pin Enable bit 1 = Shutdown when CWG input pin (CWGxIN) is high 0 = CWG input pin (CWGxIN) signal has no effect on shutdown									
bit 0	Unimplemer	nted: Read as	'0'								
	F										

REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2

25.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP[™] refer to the "*PIC16(L)F157x Memory Programming Specification*" (DS40001766).

25.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

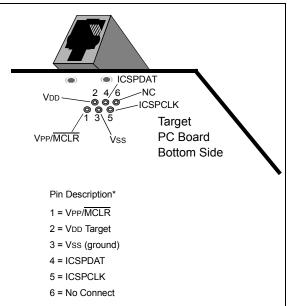
25.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

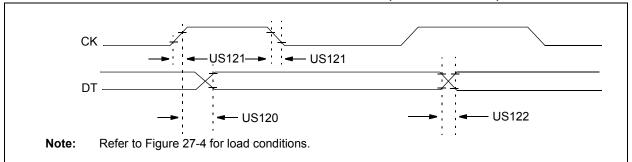
Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5** "**MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

25.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 25-1.


Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 25-2.

PIC16(L)F1574/5/8/9

LSLF	Logical Left Shift	MOVF	Move f			
Syntax:	[<i>label</i>] LSLF	Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$	Operation:	$(f) \rightarrow (dest)$			
		Status Affected:	Z			
Status Affected:	C, Z	Description:	The contents of register f is moved to a destination dependent upon the			
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'. C		status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.			
		Words:	1			
		Cycles:	1			
		Example:	MOVF FSR, 0			
LSRF	Logical Right Shift		After Instruction W = value in FSR register			
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1			

Syntax:	[<i>label</i>]LSRF f{,d}		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$		
Status Affected:	C, Z		
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		
	0 → register f C		

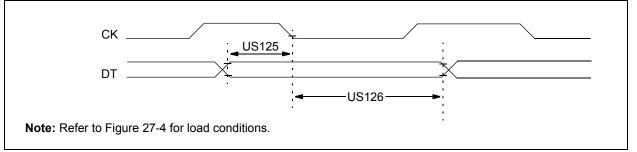

FIGURE 27-13: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-17: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 TCKH2DTV	SYNC XMIT (Master and Slave) Clock high to data-out valid	_	80	ns	$3.0V \le V\text{DD} \le 5.5V$	
		—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
US121 TCKRF	Clock out rise time and fall time (Master mode)	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$	
		_	50	ns	$1.8V \le V\text{DD} \le 5.5V$	
US122	TDTRF	TDTRF Data-out rise time and fall time	—	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \le V\text{DD} \le 5.5V$

FIGURE 27-14: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-18: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10	_	ns	
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns	

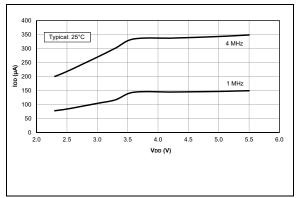


FIGURE 28-7: IDD Typical, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

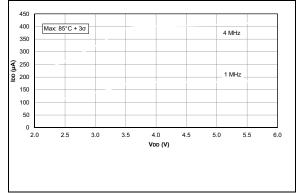
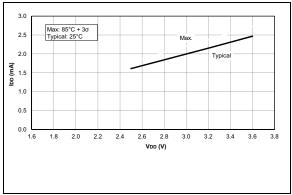
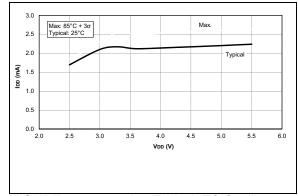




FIGURE 28-8: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-9: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-10: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

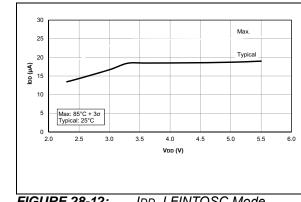


FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1574/5/8/9 Only.

12 (**V**rl) 10 8 Typical 4 2 0 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.8 1.6 VDD (V) FIGURE 28-11: IDD, LFINTOSC Mode,

Max.

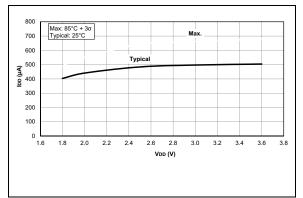
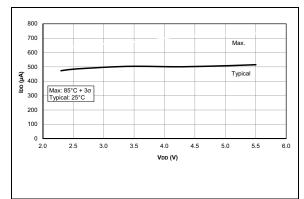
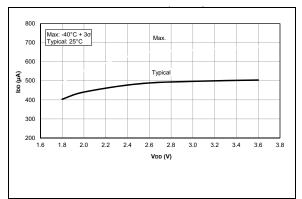
Fosc = 31 kHz, PIC16LF1574/5/8/9 Only.

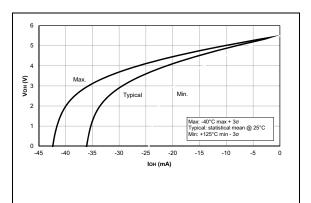
18

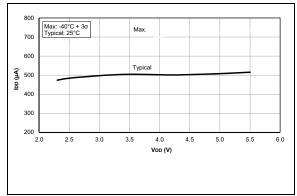
16

14

Max: 85°C + 3o Typical: 25°C


FIGURE 28-31: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16LF1574/5/8/9 Only.


FIGURE 28-32: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16F1574/5/8/9 Only.

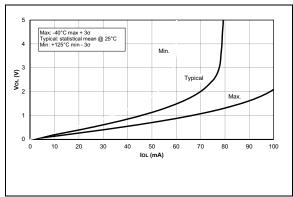

FIGURE 28-33: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16LF1574/5/8/9 Only.

FIGURE 28-35: VOH vs. IOH Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

FIGURE 28-34: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16F1574/5/8/9 Only.

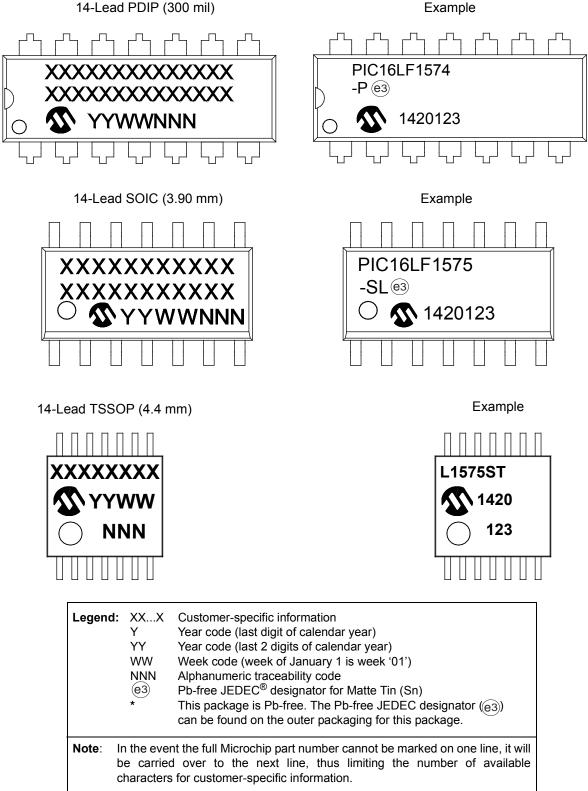
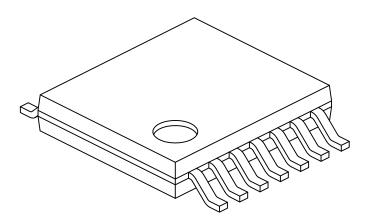


FIGURE 28-36: VoL vs. IoL Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

30.0 PACKAGING INFORMATION


30.1 **Package Marking Information**

14-Lead PDIP (300 mil)

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	IS MILLIMETERS			
Dimension	MIN	NOM	MAX		
Number of Pins	N	14			
Pitch	е	0.65 BSC			
Overall Height	А	I	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E	E 6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	(L1)	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2