

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1574t-i-st

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

3.3.5 DEVICE MEMORY MAPS

The memory maps are as shown in Table 3-3 through Table 3-13.

FIGURE 3-3: BANKI

BANKED MEMORY PARTITIONING

TABLE 3-13: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 31

		Bank 31	
F8	Ch		
		Unimplemented Read as '0'	
FE	3h		
FE	4h	STATUS_SHAD	
FE	5h	WREG_SHAD	
FE	6h	BSR_SHAD	
FE	7h	PCLATH_SHAD	
FE	8h	FSR0L_SHAD	
FE	9h	FSR0H_SHAD	
FE	Ah	FSR1L_SHAD	
FE	Bh	FSR1H_SHAD	
FE	Ch	_	
FE	Dh	STKPTR	
FE	Eh	TOSL	
FE	Fh	TOSH	
l egend:		I Inimplemented data n	nemory locations
Legenu.	read	as '0'.	ienory locations,

8.2 Low-Power Sleep Mode

This device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

Low-Power Sleep mode allows the user to optimize the operating current in Sleep. Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register, putting the LDO and reference circuitry in a low-power state whenever the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the Default Operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal Power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)

The Complementary Waveform Generator (CWG) module can utilize the HFINTOSC oscillator as either a clock source or as an input source. Under certain conditions, when the HFINTOSC is selected for use with the CWG module, the HFINTOSC will remain active during Sleep. This will have a direct effect on the Sleep mode current.

Please refer to section **24.10** "Operation During Sleep" for more information.

Note: The PIC16LF1574/5/8/9 devices do not have a configurable Low-Power Sleep mode. PIC16LF1574/5/8/9 are unregulated devices and are always in the lowest power state when in Sleep, with no wakeup time penalty. These devices have a lower maximum VDD and I/O voltage than the PIC16F1574/5/8/9 devices. See Section 27.0 "Electrical Specifications" for more information.

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump.

The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT<1:0> bits in Configuration Words).

Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash program memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1: Code protection of the entire Flash program memory array is enabled by clearing the CP bit of Configuration Words.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 16K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

Note:	If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. How-
	ever, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and
	locations.

FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL PMADRL
                             ; Select Bank for PMCON registers
            PROG_ADDR_LO
   MOVLW
                             ;
   MOVWF
            PMADRL
                             ; Store LSB of address
            PROG_ADDR_HI
   MOVLW
                              ;
   MOVWF
            PMADRH
                              ; Store MSB of address
   BCF
            PMCON1,CFGS
                             ; Do not select Configuration Space
   BSF
            PMCON1,RD
                              ; Initiate read
   NOP
                              ; Ignored (Figure 10-2)
   NOP
                              ; Ignored (Figure 10-2)
   MOVF
            PMDATL,W
                              ; Get LSB of word
   MOVWF
            PROG_DATA_LO
                             ; Store in user location
                             ; Get MSB of word
            PMDATH,W
   MOVF
   MOVWF
            PROG_DATA_HI
                             ; Store in user location
```

	U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/a ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	
	_(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD	
bit 7					11		1	bit 0	
Legei	nd:								
R = R	leada	ble bit	W = Writable b	it	U = Unimpleme	ented bit, read as	ʻ0'		
S = B	it can	only be set	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	/alue at all other I	Resets	
'1' = E	Bit is s	set	'0' = Bit is clear	red	HC = Bit is clea	red by hardware			
bit 7		Unimplemen	ted: Read as '1'						
bit 6		CFGS: Config	guration Select bit						
		1 = Access(Configuration, Use	er ID and Device	e ID Registers				
6:4 F		0 = Access F	-lash program me	mory					
DIES		1 = Only the	addressed progra	y Ditter	e latch is loaded/	undated on the r	ext WR comman	d	
		0 = The add	ressed program m	emory write latc	h is loaded/updat	ed and a write of	all program mem	ory write latches	
		will be in	itiated on the next	t WR command					
bit 4		FREE: Progra	am Flash Erase Ei	nable bit					
		1 = Performs	s an erase operati	on on the next V	VR command (ha	ardware cleared	upon completion))	
		0 = Performs	s an write operatio	on on the next W	/R command				
bit 3		WRERR: Pro	gram/Erase Error	Flag bit ⁽²⁾	or orono ooguon	a attampt or ta	mination (hit is a	at automatically	
		on any s	et attempt (write	1') of the WR bit	t).	ce allempt of lei		et automatically	
		0 = The prog	gram or erase ope	ration complete	d normally.				
bit 2		WREN: Progr	am/Erase Enable	bit					
		1 = Allows p	rogram/erase cyc	es					
		0 = Inhibits p	programming/eras	ing of program I	lash				
bit 1		WR: Write Co	ontrol bit	roarom/orooo o	noration				
		⊥ = Initiates	a program Flash p ration is self-timed	and the bit is c	peration. leared by hardwa	re once operatio	n is complete		
		The WR	The WR bit can only be set (not cleared) in software.						
		0 = Program	0 = Program/erase operation to the Flash is complete and inactive.						
bit 0		RD: Read Co	ntrol bit						
	1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit c							can only be set	
		(not clea 0 = Does no	rieu) in soπware. t initiate a program	n Flash read					
Note	1:	Unimplemented bit	read as '1'.						
	2:	The WRERR bit is a	automatically set t	by hardware whe	en a program me	mory write or era	se operation is st	tarted (WR = 1).	
	3.	The LWL O bit is iar	We obtain a program moment a program memory when the program memory when the state operation is stated ($W(-1)$).						

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	123
LATA	_	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	121
ODCONA	_	_	ODA5	ODA4	_	ODA2	ODA1	ODA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		178
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	120
SLRCONA	_	_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	123
TRISA	_	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	120
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	122

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.**Note 1:**Unimplemented, read as '1'.

TABLE 11-3: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	_	_	—	—	CLKOUTEN	BORE	N<1:0>		50
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		WDTE<1:0> FOSC<2:0>			50

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

11.6 Register Definitions: PORTC

REGISTER 11-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7 ⁽²⁾	RC6 ⁽²⁾	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'			
u = Bit is unchang	ged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other f	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits^(1, 2) 1 = Port pin is \geq VIH 0 = Port pin is \leq VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

2: RC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits⁽¹⁾ 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

Note 1: TRISC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: LATC<7:6> are available on PIC16(L)F1578/9 only.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- · Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<7:0> pins (PIC16(L)F1574/5 only)
- AN<11:0> pins (PIC16(L)F1578/9 only)
- Temperature Indicator
- DAC1_output
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 16.2.6 "ADC Conversion Procedure"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd
- FVR_buffer1

The negative voltage reference (ref-) source is:

Vss

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 27.0 "Electrical Specifications"** for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

17.0 **5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE**

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- · External VREF+ pin
- · VDD supply voltage
- FVR_buffer1

FIGURE 17-1:

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

Rev. 10-000026B 9/6/2013

VDD 00 VREF+ 01 VSOURCE+ FVR_buffer2 10

DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

FIGURE 20-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled of rising edge of T10	Cleared by hardware on falling edge of T1GVAL
t1g_in		
т1СКІ		
T1GVAL		
Timer1	Ν	<u>N+1</u> <u>N+2</u> <u>N+3</u> <u>N+4</u>
TMR1GIF	 Cleared by software 	Set by hardware on Cleared by falling edge of T1GVAL
L		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE		_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF		—	TMR2IF	TMR1IF	90
RCREG			EUS	ART Receiv	e Data Reg	gister			197*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203*
SPBRGL				BRG	<7:0>				205*
SPBRGH		BRG<15:8>							205*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

TABLE 22-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

					SYNC	; = 0, BRG	H = 0, BRG	316 = 0				
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	_	_		_		_	_	_	_
1200	1221	1.73	255	1200	0.00	239	1202	0.16	207	1200	0.00	143
2400	2404	0.16	129	2400	0.00	119	2404	0.16	103	2400	0.00	71
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17
10417	10417	0.00	29	10286	-1.26	27	10417	0.00	23	10165	-2.42	16
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8
57.6k	_	_	_	57.60k	0.00	7	—	—	_	57.60k	0.00	2
115.2k	—	—	_	—	—	_	—	—	—	_		—

TABLE 22-5:BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	H = 0, BRO	G16 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—
9600	9615	0.16	12	—		—	9600	0.00	5	—	—	—
10417	10417	0.00	11	10417	0.00	5	—	—	—	—	_	—
19.2k	—	—	—	—	—	—	19.20k	0.00	2	—	—	—
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—
115.2k	_	_	_	—	_	_	—	_	_	—	_	_

					SYNC	C = 0, BRG	H = 1, BRC	G16 = 0				
BAUD	Foso	= 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	—	_	—		—	—	_	—	—
1200	—	_	—	—	_	—	—	—	—	—	—	—
2400	—		—	—		—	—	—	—	—	_	_
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11
115.2k	113.64k	-1.36	10	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5

				SYNC = 0	, BRGH	= 1, BRG16	5 = 1 or SY	'NC = 1,	BRG16 = 1			
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	-0.01	4166	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.02	2082	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9597	-0.03	520	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	479	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	116.3k	0.94	42	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	—
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	—	_

FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS

	8 7	6		0
OPCODE	d		f (FILE #)	
d = 0 for des d = 1 for des f = 7-bit file	stination V stination f register ac	V ddres	s	
Bit-oriented file	register o	perat	tions	0
OPCODE	b (E	, BIT #)	f (FILE #	<u>t)</u>
b = 3-bit bit f f = 7-bit file	address register ad	ddres	S	
Literal and contr	ol operat	ions		
General				
13	8	7		0
OPCODE			k (literal)	
k = 8-bit imn	nediate va	alue		
CALL and GOTO ir	structions	s only		
<u>13 11</u>	10	,		0
OPCODE		k	(literal)	
k = 11-bit im	mediate v	alue		
	only			
13	Ully	7	3	0
OPCODE			k (literal)	
k = 7-bit imn	nediate va	lue		
MOVLB instruction	only		E 4	0
OPCODE			k (litera	0 1)
k = 5-bit imn	nediate va	مىال	(,
		liue		
BRA instruction or	niy O	0		0
BRA instruction or 13 OPCODE	9	8	k (literal)	0
BRA instruction or 13 OPCODE	9	8	k (literal)	0
BRA instruction or 13 OPCODE k = 9-bit imr	9 nediate va	8 alue	k (literal)	0
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru	niy 9 nediate va	8 alue	k (literal)	0
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13	9 mediate va	8 alue 6	k (literal) 5	0
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE	9 mediate va	8 alue 6 n	k (literal) 5 k (litera	0 0 I)
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr	9 mediate va ctions 7 iate FSR mediate va	8 alue 6 n	5 k (literal)	0 0 1)
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13	9 nediate va ctions 7 iate FSR nediate va	8 alue 6 n alue	k (literal) 5 k (litera 3 2 1	0 0 1)
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13 OPCODE	9 mediate va ctions 7 iate FSR mediate va structions	8 alue 6 n alue	k (literal) 5 k (litera 3 2 1 n m (r	0 0 1) 0 node
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13 OPCODE n = appropr m = 2-bit m	9 mediate va ctions 7 iate FSR mediate va structions iate FSR ode value	8 alue 6 n	k (literal) 5 k (litera 3 2 1 n m (r	0 0 1) 0 node
BRA instruction or 13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13 OPCODE n = appropr m = 2-bit mr OPCODE only 13	9 mediate va ctions 7 iate FSR mediate va structions iate FSR ode value	8 alue 6 n	k (literal) 5 k (litera 3 2 1 n m (r	0 0 1) 0 node

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + $1 + k$. This instruction is a 2-cycle instruction. This branch has a limited range.

BRW	Relative Branch with W		
Syntax:	[<i>label</i>] BRW		
Operands:	None		
Operation:	$(PC) + (W) \rightarrow PC$		
Status Affected:	None		
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + (W) This instruction is a 2-cycle instruc- tion.		

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

27.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	ase letters (pp) and their meanings:			
рр				
СС	CCP1	OSC	CLKIN	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDIx	SC	SCKx	
do	SDO	SS	SS	
dt	Data in	t0	TOCKI	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	ase letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 27-4: LOAD CONDITIONS

FIGURE 28-73: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 3.6V, LF Devices Only.

Package Marking Information (Continued)

16-Lead UQFN (4x4x0.5mm) Example • XXXXX XXXXXX YXXXXX YXXXX PIC16 PIN 1-PIN 1-LF1575 ML e3 410017 WNNN

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	N	20			
Pitch	е		0.50 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.60 2.70 2.80			
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.60	2.70	2.80	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2