Microchip Technology - PIC16LF1575-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1575-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1574/5/8/9 are described within this data sheet. The block diagram of these devices are shown in Figure 1-1, the available peripherals are shown in Table 1-1, and the pinout descriptions are shown in Table 1-2 and Table 1-3.

TABLE 1-1:DEVICE PERIPHERAL
SUMMARY

Peripheral		PIC16(L)F1574	PIC16(L)F1575	PIC16(L)F1578	PIC16(L)F1579
Analog-to-Digital Converte	r (ADC)	•	٠	٠	•
Complementary Wave Ger (CWG)	nerator	•	•	•	•
Digital-to-Analog Converte	r (DAC)	•	٠	٠	•
Enhanced Universal Synchronous/Asynchronou Receiver/Transmitter (EUS	•	•	•	•	
Fixed Voltage Reference (FVR)	•	٠	٠	•
Temperature Indicator		•	٠	٠	٠
Comparators					
	C1	•	٠	٠	•
	C2	٠	٠	٠	٠
PWM Modules		0			
	PWM1	٠	٠	٠	•
	PWM2	٠	٠	٠	•
	PWM3	•	٠	٠	•
	PWM4	•	•	•	•
Timers					
	Timer0	•	•	•	•
	Timer1	•	•	•	•
	Timer2	•	٠	٠	•

TABLE 1-2:PIC16(L)F1574/5 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/ADCACT ⁽¹⁾ /CK ⁽¹⁾	RC4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	ADCACT	TTL/ST	—	ADC Auto-conversion Trigger input.
	СК	ST	CMOS	USART synchronous clock.
RC5/RX ^(1,3)	RC5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	RX	ST	—	USART asynchronous input.
OUT ⁽²⁾	C1OUT		CMOS	Comparator output.
	C2OUT		CMOS	Comparator output.
	PWM10UT		CMOS	PWM1 output.
	PWM2OUT		CMOS	PWM2 output.
	PWM3OUT		CMOS	PWM3 output.
	PWM4OUT	_	CMOS	PWM4 output.
	CWG1A		CMOS	Complementary Output Generator Output A.
	CWG1B		CMOS	Complementary Output Generator Output B.
	TX/CK	-	CMOS	USART asynchronous TX data/synchronous clock output.
	DT ⁽³⁾		CMOS	USART synchronous data output.
VDD	Vdd	Power	—	Positive supply.
Vss	Vss	Power		Ground reference.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal
 Levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-3: PIC16(L)F1574 MEMORY MAP, BANKS 0-7

	BANK0		BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h		080h		100h		180h		200h		280h		300h		380h	
	(Table 3-2)		(Table 3-2)		(Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh	(08Bh	(10Bh	(18Bh	(10000 0 _)	20Bh	(28Bh	(1000000)	30Bh	(12210 0 2)	38Bh	(10000 0 _)
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	_	08Dh	_	10Dh	_	18Dh	_	20Dh	_	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	—	10Fh	—	18Fh	_	20Fh	_	28Fh	—	30Fh	_	38Fh	_
010h	_	090h	_	110h	_	190h	_	210h	_	290h	—	310h	_	390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	—	293h	_	313h	_	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	—	294h	_	314h	_	394h	—
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	—	295h	—	315h	—	395h	—
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h	_	396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	—	298h	_	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	—	39Ch	_
01Dh	_	09Dh	ADCON0	11Dh	_	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	_
01Eh	—	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	_	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General	3A0h	
													Purpose		
	General		General		General		General		General		General	20 5 6	16 Bytes		
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose	32F11	TO Dytes		Unimplemented
	Register		Register		Register		Register		Register		Register	330n	Unimplemented		Read as '0'
	ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		Read as '0'		
												005		0551	
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		u⊢un	A0000005	170n	A0000005	TEUN	A	270h	A0000000	∠⊢uh	A 0000000	370h	A0000000	3⊢0n	A
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Eb		OFEN	/ // //	17Eb	/ // // //	1EEb	7.511 7111	27Eb		2EEb		37Eb	/ // //	3EEb	/ // //
0/FII		UFFI		1750		1640		21511		2621		37 FI		SEEU	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1574.

PIC16(L)F1574/5/8/9

PIC16(L)F1574/5/8/9

FIGURE 3-9: INDIRECT ADDRESSING

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOREN	BORV ⁽³⁾	STVREN	PLLEN
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1
—	—	—	—	_	PPS1WAY	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	P = Program	mable bit	U = Unimplem	nented bit, read	l as '1'	
'0' = Bit is	cleared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13	LVP: Low-Vo	oltage Programi	ming Enable bit	₍ (1)			
	1 = ON -	- Low-voltage	programming	enabled. MC	LR/VPP pin f	unction is MC	CLR. MCLRE
		Configuration	bit is ignored.				
	0 = OFF -	- High Voltage	on MCLR/VPP	must be used fo	or programming	J	
bit 12	DEBUG: De	bugger Mode bi	(²)				
	1 = OFF -	- In-Circuit Debu	lgger disabled;	ICSPCLK and	ICSPDAT are (general purpose	e I/O pins.
L:1 4 4			ugger enabled,		ICSPDAT ale C		; debugger.
DICTI	1 - OFF	LOW-POWER Bro	wn-out Reset E	is disabled			
	0 = ON -	- Low-power Bro	own-out Reset	is enabled			
bit 10	BORV: Brow	n-out Reset Vo	Itage Selection	bit ⁽³⁾			
	1 = LOW -	- Brown-out Res	set voltage (VB	OR), low trip poi	nt selected		
	0 = HIGH -	- Brown-out Res	set voltage (VB	OR), high trip po	oint selected		
bit 9	STVREN: St	tack Overflow/U	nderflow Reset	t Enable bit			
	1 = ON -	 Stack Overflow 	v or Underflow	will cause a Re	set		
	0 = OFF -	 Stack Overflow 	v or Underflow	will not cause a	Reset		
bit 8	PLLEN: PLL	Enable bit					
	1 = ON -	- 4xPLL enabled	3				
h# 7 0	0 = OFF -		u 1,				
	Unimpleme						
bit 2	PPS1WAY: H		ne-Way Set Er	hable bit			4
	$\perp = ON$	PPSLOCK	off can only be	set once atter a	in uniocking sec	Juence is execu-	tea; once
	0 = OFF	The PPSLOCK	bit can be set a	and cleared as r	needed (provide	d an unlocking s	sequence is
	-	executed)					
Note 4:	This hit serves to		to (0) where ===		o io optored de		
NOTE 1:		in Configuration	U U when pro	gramming mod		i LVP.	
2:	THE DEBUG bit	in Configuration	i vvoras is man	ageo automatic	any by device of	Jevelopment to	ois incluaing

REGISTER 4-2: CONFIGURATION WORD 2

- debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
- **3:** See VBOR parameter for specific trip point voltages.

6.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit ($\overline{\text{BOR}}$) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR voltage threshold (VLPBOR) has a wider tolerance than the BOR (VBOR), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
х	1	Enabled

6.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the \overline{MCLR} pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0 "Watchdog Timer (WDT)"** for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2 "Overflow/Underflow Reset"** for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overline{\text{PWRTE}}$ bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	_	_	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable I	oit			
	1 = Enables t 0 = Disables t	he Timer1 gate the Timer1 gate	e acquisition in e acquisition i	nterrupt nterrupt			
bit 6	ADIE: Analog	j-to-Digital Con	verter (ADC)	Interrupt Enabl	e bit		
	1 = Enables t	he ADC interru	pt				
	0 = Disables	the ADC interru	upt				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
	1 = Enables t 0 = Disables t	he USART rec the USART rec	eive interrupt eive interrupt:				
bit 4	TXIE: USART	Transmit Inter	rupt Enable b	oit			
	1 = Enables t	he USART trar	nsmit interrupt				
	0 = Disables	the USART tra	nsmit interrup	t			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Ei	nable bit			
	 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt 						
bit 0	TMR1IE: Time	er1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t 0 = Disables t	he Timer1 over the Timer1 ove	flow interrupt	t			
Note: Bit	PEIE of the IN	TCON register	must be				
set	t to enable any p	peripheral inter	rupt.				

REGISTER 7-2:	PIE1: PERIPHERAL	INTERRUPT I	ENABLE REGISTER	1
REGISTER /-2.	FIET. FERIFIERAL	INTERROFT	ENABLE REGISTER	

REGISTER 11-20:	ANSELC: PORTC ANALOG SELECT REGISTER
-----------------	--------------------------------------

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0
bit 7				•		•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is une	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	bit 7-6 ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ^(1, 2) 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ Digital input buffer disabled						
bit 5-4	bit 5-4 Unimplemented: Read as '0'						
bit 3-0	 ansc<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 						
Note 1: V	Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to						

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xx	xPPS: PERIPHERAL xxx	INPUT SELECTION
-------------------	-----------------------------	-----------------

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
	_	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periphe	eral	
bit 7-5	Unimplement	ted: Read as 'd)'				
bit 4-3	xxxPPS<4:3> 11 = Reserve 10 = Peripher 01 = Peripher 00 = Peripher	 Peripheral xx d. Do not use. al input is POR al input is POR al input is POR 	x Input PORT TC TB ⁽²⁾ TA	Γ Selection bits			
bit 2-0 xxxPPS<2:0>: Peripheral input is PORTB ^{S-7} 00 = Peripheral input is PORTA bit 2-0 xxxPPS<2:0>: Peripheral xxx Input Bit Selection bits ⁽¹⁾ 111 = Peripheral input is from PORTx Bit 7 (Rx7) 110 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5) 100 = Peripheral input is from PORTx Bit 4 (Rx4) 011 = Peripheral input is from PORTx Bit 3 (Rx3) 010 = Peripheral input is from PORTx Bit 2 (Rx2) 001 = Peripheral input is from PORTx Bit 1 (Rx1) 000 = Peripheral input is from PORTx Bit 0 (Rx0)							

Note 1: See Table 12-1 for xxxPPS register list and Reset values.2: PIC16(L)F1578/9 only.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
—	—	—			RxyPPS<4:0>				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	as '0'				
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 12-2 for the selection codes

'0' = Bit is cleared

1' = Bit is set

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

R/W-0/0	R/W-0/	0 R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
TRIGSEL<3:0> ⁽¹⁾			_	_	_	_		
bit 7					·		bit 0	
Legend:								
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is unc	hanged	x = Bit is unkr	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set	t	'0' = Bit is clea	ared					
bit 7-4	TRIGSEL	-<3:0>: Auto-Conve	ersion Trigger	Selection bits(1)			
	0000 =	No auto-conversion	n trigger seled	ted				
	0001 =	PWM1 – PWM1_ir	iterrupt					
	0010 =	PWM2 – PWM2_ir	iterrupt					
	0011 =	Timer0 – T0 overf	ow ⁽²⁾					
	0100 =	Timer1 – T1_overf	ow ⁽²⁾					
	0101 =	Timer2 – T2 match						
	0110 =	Comparator C1 – C1OUT sync						
	0111 =	Comparator C2 – C2OUT sync						
	1000 =	PWM1 – PWM1 C	F_match					
	1001 =	PWM2 – PWM2 OF match						

REGISTER 16-3: ADCON2: ADC CONTROL REGISTER 2

1010 = PWM3 – PWM3_OF_match 1011 = PWM3 – PWM3_interrupt 1100 = PWM4 – PWM4_OF_match 1101 = PWM4 – PWM4_interrupt

1111 = CWG input pin

Unimplemented: Read as '0' Note 1: This is a rising edge sensitive input for all sources. 2: Signal also sets its corresponding interrupt flag.

1110 = ADC Auto-Conversion Trigger input pin

bit 3-0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	_	—		ADRE	S<9:8>	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 16-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

bit 7-2 **Reserved**: Do not use.

bit 1-0	ADRES<9:8>: ADC Result Register bits
	Upper two bits of 10-bit conversion result

REGISTER 16-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits Lower eight bits of 10-bit conversion result

19.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 3-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

TMR0CS

TMR0 can be used to gate Timer1

Figure 19-1 is a block diagram of the Timer0 module.

19.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

19.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 19-1: TIMER0 BLOCK DIAGRAM

19.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

Rev. 10-000017A 8/5/2013

FIGURE 23-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

PIC16(L)F1574/5/8/9

FIGURE 23-13:

PIC16(L)F1574/5/8/9

24.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 24-1 for more detail.

EQUATION 24-1: DEAD-BAND UNCERTAINTY

$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$

Example:
$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 62.5 ns$$

24.9 Auto-Shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

24.9.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

24.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 24-6.

24.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are:

- Comparator C1 C1OUT_sync
- Comparator C2 C2OUT_sync
- CWG1FLT

Shutdown inputs are selected in the CWGxCON2 register. (Register 24-3).

```
Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.
```

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
GxASDLB<1:0>		GxASD	GxASDLA<1:0>			GxIS<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value	at POR and BC	R/Value at all c	ther Resets	
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value de	pends on condi	tion		
bit 7-6	GxASDLB<1	I: 0>: CWGx Sh	utdown State	for CWGxB				
	When an aut	o shutdown eve	ent is present	(GxASE = 1):				
	11 = CWGxE	B pin is driven to	oʻ1', regardle	ss of the settin	g of the GxPOL	B bit.		
	10 = CWGXE	3 pin is driven to 3 pin is tri-state	o °0°, regardie	ss of the settin	g of the GXPOL	B DIT.		
	01 = CWGXL	3 pin is driven to	u o its inactive s	tate after the s	elected dead-b	and interval Gx	POLB still will	
	control	the polarity of t	he output.					
bit 5-4	GxASDLA<1	I: 0>: CWGx Sh	utdown State	for CWGxA				
	When an aut	o shutdown eve	ent is present	(GxASE = 1):				
	11 = CWGxA	A pin is driven to	oʻ1', regardle	ss of the settin	g of the GxPOL	A bit.		
	10 = CWGxA	A pin is driven to	oʻ0', regardle	ss of the settin	g of the GxPOL	A bit.		
	01 = CWGXA	A pin is driven to	u o its inactive s	tate after the s	elected dead-b	and interval Gx	POLA still will	
	control	the polarity of t	he output.					
bit 3	Unimplemer	nted: Read as '	0'					
bit 2-0	GxIS<2:0>: (CWGx Input So	urce Select b	its				
	111 = Reser	rved						
	110 = CWG	input pin						
	101 = PWM	4 – PWM4_out						
	100 = PVVM	3 - PVVIVI3_OUT 2 - P\//M2 out						
	010 = PWM	∠ – F ₩₩2_000 1 – PWM1_001						
	$010 = \text{PWWIT} - \text{PWWIT}_\text{out}$ 001 = Comparator C2 - C2OUT sync							

REGISTER 24-2: CWGxCON1: CWG CONTROL REGISTER 1

000 = Comparator C1 – C1OUT_sync

TABLE 27-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C										
Param. No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions			
AD01	NR	Resolution		—	10	bit				
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V			
AD04	EOFF	Offset Error		±1	±2.5	LSb	VREF = 3.0V			
AD05	Egn	Gain Error		±1	±2.0	LSb	VREF = 3.0V			
AD06	Vref	Reference Voltage	1.8		Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)			
AD07	VAIN	Full-Scale Range	Vss		VREF	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.			

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

FIGURE 28-7: IDD Typical, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-8: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-9: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-10: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1574/5/8/9 Only.

12 (**V**rl) 10 8 Typical 4 2 0 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.8 1.6 VDD (V) FIGURE 28-11: IDD, LFINTOSC Mode,

Max.

Fosc = 31 kHz, PIC16LF1574/5/8/9 Only.

18

16

14

Max: 85°C + 3o Typical: 25°C