

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·><Fl

2 0 000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1575t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

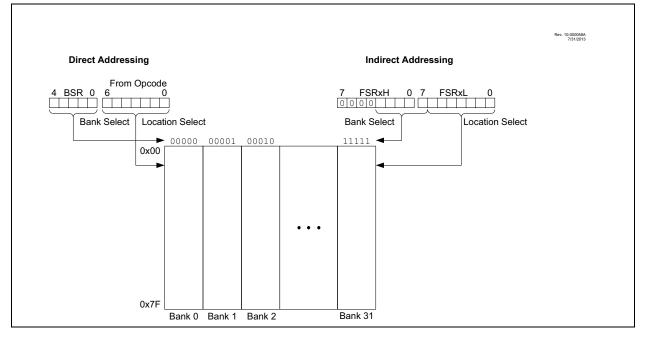
During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See section **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.


2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 26.0** "Instruction Set Summary" for more details.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

REGISTER 4-2: CONFIGURATION WORD 2 (CONTINUED)

bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits

- 4 kW Flash memory: (PIC16(L)F1574/8):
 - 11 = OFF Write protection off
 - 10 = BOOT 0000h to 1FFh write protected, 0200h to 0FFFh may be modified by PMCON control
 - 01 = HALF 0000h to 07FFh write protected, 0800h to 0FFFh may be modified by PMCON control
 - 00 = ALL 0000h to 0FFFh write protected, no addresses may be modified by PMCON control
 - 8 kW Flash memory: (PIC16(L)F1575/9)
 - 11 = OFF Write protection off
 - 10 = BOOT 0000h to 1FFh write protected, 0200h to 1FFFh may be modified by PMCON control
 - 01 = HALF 0000h to 0FFFh write protected, 1000h to 1FFFh may be modified by PMCON control
 - 00 = ALL 0000h to 1FFFh write protected, no addresses may be modified by PMCON control
- Note 1: This bit cannot be programmed to '0' when programming mode is entered via LVP.
 - **2:** The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
 - **3:** See VBOR parameter for specific trip point voltages.

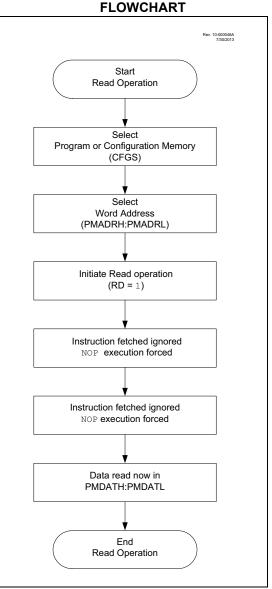
See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1574		
PIC16(L)F1575	32	32
PIC16(L)F1578	52	52
PIC16(L)F1579		

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

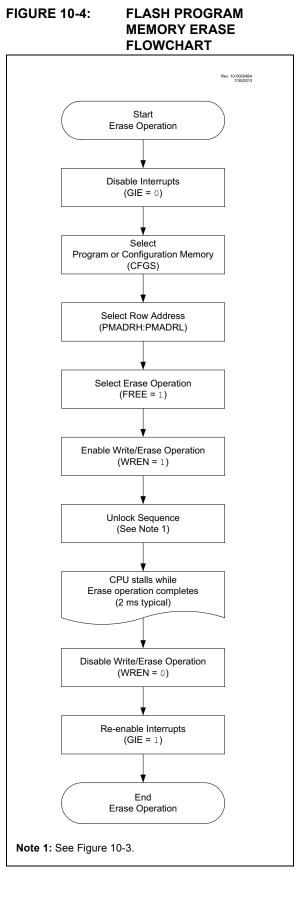

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH: PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ


10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

; 1. A	valid addr	ess within the	s the following: erase row is loaded in ADDRH:ADDRL d in shared data memory 0x70 - 0x7F (common RAM)
	BCF BANKSEL MOVF MOVWF MOVWF BCF BSF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVWF MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
_	—	_	—	_	_	PPSLOCKED
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unkno		own	-n/n = Value a	at POR and BC	OR/Value at al	I other Resets
	'0' = Bit is clea	ared				
	e bit	e bit W = Writable H nanged x = Bit is unkn	e bit W = Writable bit nanged x = Bit is unknown	e bit W = Writable bit U = Unimplen nanged x = Bit is unknown -n/n = Value a	- - - - e bit W = Writable bit U = Unimplemented bit, rea nanged x = Bit is unknown -n/n = Value at POR and BO	- - - - - e bit W = Writable bit U = Unimplemented bit, read as '0' nanged x = Bit is unknown -n/n = Value at POR and BOR/Value at al

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

REGISTER 13-4:	IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER ⁽¹⁾
----------------	--

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		:	U = Unimpleme	ented bit, read as '	כי		
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets
'1' = Bit is set		'0' = Bit is cleare	ed				

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
 - 0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0	Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	-	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>**: Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

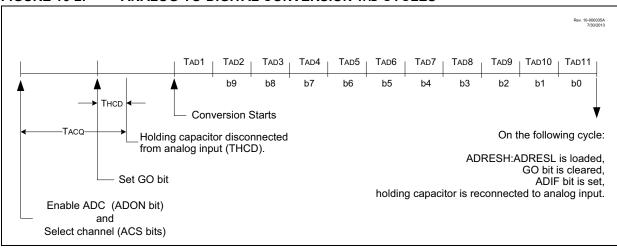
REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_	—	—
bit 7	-	•					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	1 = An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'


Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

ADC Clock Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0 >	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs	
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs	
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs	
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs	
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs	
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs	
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

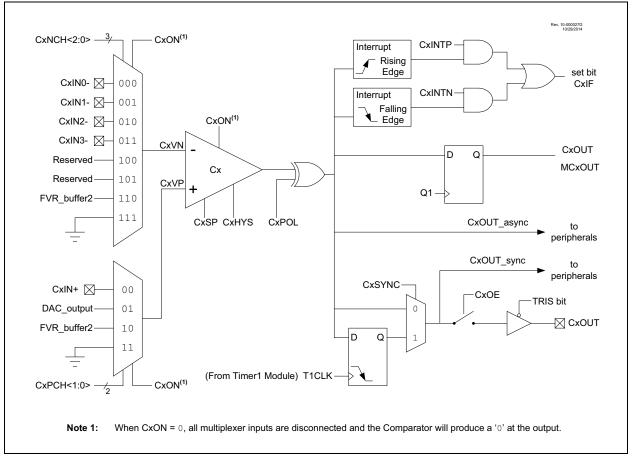
FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

18.0 COMPARATOR MODULE

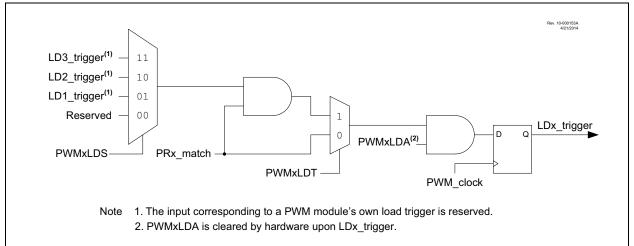
Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- · Programmable input selection
- · Comparator output is available internally/externally
- · Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- PWM shutdown
- · Programmable and Fixed Voltage Reference

18.1 Comparator Overview


A single comparator is shown in Figure 18-2 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

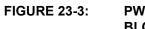
The comparators available for this device are listed in Table 18-1.


TABLE 18-1: AVAILABLE COMPARATORS

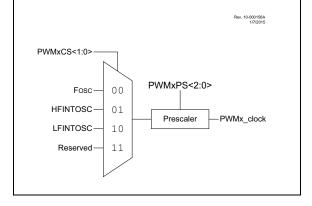
Device	C1	C2
PIC16(L)F1574	•	•
PIC16(L)F1575	•	•
PIC16(L)F1578	•	•
PIC16(L)F1579	•	•

FIGURE 18-1: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

23.1 Fundamental Operation


The PWM module produces a 16-bit resolution pulse width modulated output.

Each PWM module has an independent timer driven by a selection of clock sources determined by the PWMxCLKCON register (Register 23-4). The timer value is compared to event count registers to generate the various events of a the PWM waveform, such as the period and duty cycle. For a block diagram describing the clock sources refer to Figure 23-3.


Each PWM module can be enabled individually using the EN bit of the PWMxCON register, or several PWM modules can be enabled simultaneously using the mirror bits of the PWMEN register.

The current state of the PWM output can be read using the OUT bit of the PWMxCON register. In some modes this bit can be set and cleared by software giving additional software control over the PWM waveform. This bit is synchronized to Fosc/4 and therefore does not change in real time with respect to the PWM_clock.

Note:	If PWM_clock > Fosc/4, the OUT bit may
	not accurately represent the output state of
	the PWM.

PWM CLOCK SOURCE BLOCK DIAGRAM

23.1.1 PWMx PIN CONFIGURATION

All PWM outputs are multiplexed with the PORT data latch, so the pins must also be configured as outputs by clearing the associated PORT TRIS bits.

The slew rate feature may be configured to optimize the rate to be used in conjunction with the PWM outputs. High-speed output switching is attained by clearing the associated PORT SLRCON bits.

The PWM outputs can be configured to be open-drain outputs by setting the associated PORT ODCON bits.

23.1.2 PWMx Output Polarity

The output polarity is inverted by setting the POL bit of the PWMxCON register. The polarity control affects the PWM output even when the module is not enabled.

23.7 Register Definitions: PWM Control

Long bit name prefixes for the 16-bit PWM peripherals are shown in Table 23-1. Refer to **Section 1.1 "Register and Bit Naming Conventions**" for more information

TABLE 23-1:

Peripheral	Bit Name Prefix
PWM1	PWM1
PWM2	PWM2
PWM3	PWM3
PWM4	PWM4

REGISTER 23-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EN	—	OUT	POL	MODE	E<1:0>	—	_
bit 7							bit 0

Legend:					
HC = Bit i	s cleared by ha	rdware	HS = Bit is set by hardware		
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set		'0' = Bit is cleared			
bit 7 EN: PWM Module Enable bit		Module Enable bit			
1 = Module is enabled					
0 = Module is disabled					
bit 6	Unimplen	nented: Read as '0'			
bit 5	OUT: Outp	out State of the PWM module			
bit 4	POL: PWI	M Output Polarity Control bit			
	1 = PWM	output active state is low			
	0 = PWM	output active state is high			
bit 3-2	MODE<1:	0>: PWM Mode Control bits			
	11 = Cent	er-Aligned mode			
	10 = Togg	le On Match mode			
	01 = Set (On Match mode			
	00 = Stan	dard PWM mode			

bit 1-0 Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PWM3CLKCON	_		PS<2:0>		_	_	CS<	:1:0>	235
PWM3LDCON	LDA	LDT	—	—	_	_	LDS	<1:0>	236
PWM30FC0N	_	OFM	OFM<1:0> OFO - OFS<1:0>				<1:0>	237	
PWM4PHL		PH<7:0>						238	
PWM4PHH				PI	H<15:8>				238
PWM4DCL				D	C<7:0>				239
PWM4DCH		DC<15:8>						239	
PWM4PRL		PR<7:0>						240	
PWM4PRH	PR<15:8>						240		
PWM40FL		OF<7:0>						241	
PWM40FH	OF<15:8>						241		
PWM4TMRL		TMR<7:0>						242	
PWM4TMRH		TMR<15:8>					242		
PWM4CON	EN	_	OUT	POL	MODE	E<1:0>		—	233
PWM4INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	234
PWM4INTF		—	_	_	OFIF	PHIF	DCIF	PRIF	234
PWM4CLKCON	_		PS<2:0>	•	_	_	CS<	:1:0>	235
PWM4LDCON	LDA	LDT	—	—	_	_	LDS	<1:0>	236
PWM40FCON	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	237

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM (CONTINUED)

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

TABLE 23-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	-	—	-	—	CLKOUTEN	BORE	N<1:0>	—	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	_	FOSC	C<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS

13	8 7	6		0
OPCODE	d		f (FILE #)	
d = 0 for des d = 1 for des f = 7-bit file	stination f		s	
Bit-oriented file 1 13	r egister o 10 9	perat 7	t ions 6	0
OPCODE		, BIT #)	-	
b = 3-bit bit f f = 7-bit file		ddres	s	
Literal and contr	ol operat	ions		
General				
13	8	7		0
OPCODE			k (literal)	
k = 8-bit imn	nediate va	alue		
CALL and GOTO ir	structions	s only		
<u>13 11</u>	10	,		0
OPCODE		k	(literal)	
k = 11-bit im	mediate v	alue		
	only			
MOVLP instruction 13	Ully	7	3	0
OPCODE			k (literal)	
k = 7-bit imn	nediate va	lue		
MOVLB instruction	only		54	0
13 OPCODE			5 4 k (litera	0
k = 5-bit imn	nediate va	مىال	(,
		liue		
BRA instruction or		0		0
BRA instruction or 13 OPCODE	9	8	k (literal)	0
13 OPCODE	9	-	k (literal)	0
13	9	-	k (literal)	0
13 OPCODE k = 9-bit imr FSR Offset instru	9 mediate va	-	k (literal)	0
13 OPCODE k = 9-bit imr FSR Offset instru 13	9 mediate va	alue 6	5	0
13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE	9 mediate va ctions 7	alue		0
13 OPCODE k = 9-bit imr FSR Offset instru 13	9 mediate va ctions 7 iate FSR	alue 6 n	5	0
13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr	9 mediate va ctions 7 iate FSR mediate va	alue 6 n	5	0
13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins	9 mediate va ctions 7 iate FSR mediate va	alue 6 n	5 k (litera 3 2 1	0
13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13	9 nediate va ctions 7 iate FSR mediate va structions iate FSR	alue 6 n	5 k (litera 3 2 1	0 I) 0
13 OPCODE k = 9-bit imr FSR Offset instru 13 OPCODE n = appropr k = 6-bit imr FSR Increment ins 13 OPCODE n = appropr	9 nediate va ctions 7 iate FSR mediate va structions iate FSR	alue 6 n	5 k (litera 3 2 1	0 I) 0

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f				
Syntax:	[<i>label</i>] INCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

TABLE 27-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF	1574/5/8/9	Standard Operating Conditions (unless otherwise stated)							
PIC16F1	574/5/8/9								
Param. Device		Min.	Тур†	Max.	Units	Conditions			
No.	Characteristics		1961			Vdd	Note		
D013		_	41	51	μA	1.8	Fosc = 1 MHz,		
		—	69	80	μA	3.0	External Clock (ECM), Medium Power mode		
D013		—	79	107	μA	2.3	Fosc = 1 MHz,		
			105	138	μA	3.0	External Clock (ECM),		
			151	184	μA	5.0	Medium Power mode		
D014			134	152	μA	1.8	Fosc = 4 MHz,		
		-	234	268	μA	3.0	External Clock (ECM), Medium Power mode		
D014			201	255	μA	2.3	Fosc = 4 MHz,		
		—	270	329	μA	3.0	External Clock (ECM), Medium Power mode		
		—	344	431	μA	5.0			
D015		—	7	19	μA	1.8	Fosc = 31 kHz,		
		—	9	20	μA	3.0	LFINTOSC, -40°C ≤ Ta ≤ +85°C		
D015			15	25	μA	2.3	Fosc = 31 kHz,		
		_	18	28	μA	3.0	└ LFINTOSC, 40°C ≤ TA ≤ +85°C		
		_	20	29	μA	5.0	$=-40$ C \leq 1A \leq +65 C		
D016		—	128	174	μA	1.8	Fosc = 500 kHz,		
		_	153	203	μA	3.0	MFINTOSC		
D016		—	166	241	μA	2.3	Fosc = 500 kHz,		
			187	273	μA	3.0	MFINTOSC		
		_	249	332	μA	5.0			
D017*		_	0.6	0.7	mA	1.8	Fosc = 8 MHz,		
		_	0.9	1.1	mA	3.0	HFINTOSC		
D017*		—	0.7	1.0	mA	2.3	Fosc = 8 MHz,		
		_	1.0	1.1	mA	3.0	HFINTOSC		
		_	1.1	1.2	mA	5.0			
D018		_	0.9	1.0	mA	1.8	Fosc = 16 MHz,		
		_	1.3	1.4	mA	3.0	HFINTOSC		
D018		_	1.1	1.3	mA	2.3	Fosc = 16 MHz,		
		_	1.3	1.5	mA	3.0	HFINTOSC		
		_	1.5	1.8	mA	5.0	-		

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

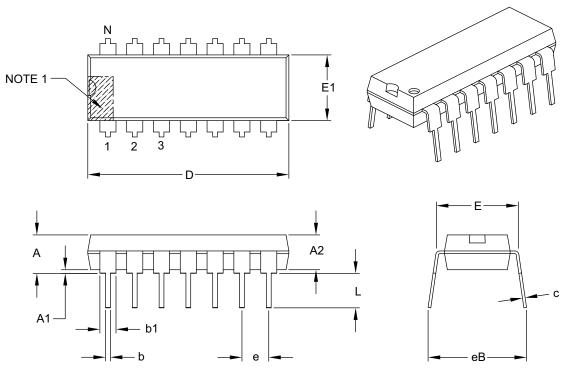
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3: PLL required for 32 MHz operation.

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Typ. Units		Conditions		
ТН01 θја		Thermal Resistance Junction to Ambient	70	°C/W	14-pin PDIP package		
	95.3		°C/W	14-pin SOIC package			
			100	°C/W	14-pin TSSOP package		
			31.8	°C/W	16-pin UQFN 4x4mm package		
			62.2	°C/W	20-pin PDIP package		
			77.7	°C/W	20-pin SOIC package		
			87.3	°C/W	20-pin SSOP package		
			32.8	°C/W	20-pin UQFN 4x4mm package		
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W	14-pin PDIP package		
			31	°C/W	14-pin SOIC package		
		24.4	°C/W	14-pin TSSOP package			
		24.4	°C/W	16-pin UQFN 4x4mm package			
		27.5	°C/W	20-pin PDIP package			
		23.1	°C/W	20-pin SOIC package			
		31.1	°C/W	20-pin SSOP package			
		27.4	°C/W	20-pin UQFN 4x4mm package			
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

TABLE 27-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.


2: TA = Ambient Temperature; TJ = Junction Temperature

30.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

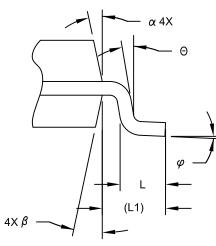
	Units				
Dimens	ion Limits	MIN	NOM	MAX	
Number of Pins	Ν	14			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

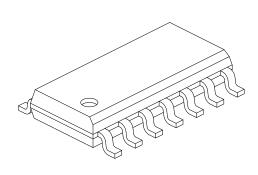
Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

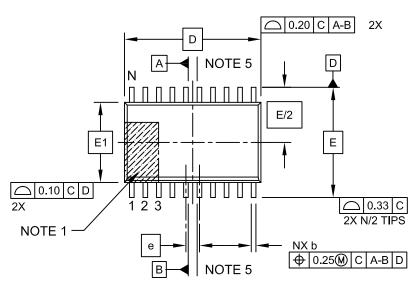
Microchip Technology Drawing C04-005B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

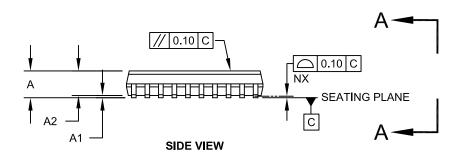
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

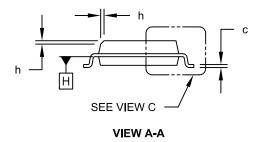
VIEW C

	MILLIMETERS				
Dimension Lir	MIN	NOM	MAX		
Number of Pins	N	14			
Pitch	е		1.27 BSC		
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25 - 0.50			
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	c	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.


Microchip Technology Drawing No. C04-065C Sheet 2 of 2


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-094C Sheet 1 of 2