

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1575t-i-st

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-14.

TABLE 3-2:	CORE REGISTERS
IADLL J-Z.	

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
k0Bh or x8Bh	INTCON

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	PORTB ⁽¹⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	xxxx
00Eh	PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	xxxx xxxx
00Fh	—	Unimplemen	nted							_	_
010h	—	Unimplemen	nted							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	000000	000000
012h	PIR2	_	C2IF	C1IF	_	—	—	_	—	-00	-00
013h	PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	_	—	0000	0000
014h	—									—	—
015h	TMR0	Holding Reg	ister for the 8	3-bit Timer0 (Count					xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	ister for the l	_east Signific	ant Byte of the	16-bit TMR1 Co	ount			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Reg	ister for the I	Most Significa	ant Byte of the	16-bit TMR1 Co	unt			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	—	T1SYNC	_	TMR10N	0000 -0-0	uuuu -u-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Mod	ule Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Period Register								1111 1111	1111 1111
01Ch	T2CON	- T20UTPS<3:0> TMR20N T2CKPS<1:0>							-000 0000	-000 0000	
01Dh	_	Unimplemented								_	_
01Eh	—	Unimplemented								_	
01Fh	—	Unimplemer	nted							_	_

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	•	•		•	•						
D8Ch	_	Unimpleme	nted							—	—
D8Dh	_	Unimpleme	nted							_	—
D8Eh	PWMEN	_	—	_	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	0000	0000
D8Fh	PWMLD	_	_	_	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	0000	000
D90h	PWMOUT	_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM10UT_A	0000	0000
D91h	PWM1PHL					PH<7:0>				xxxx xxxx	นนนน นนนเ
D92h	PWM1PHH					PH<15:8>				xxxx xxxx	นนนน นนนเ
D93h	PWM1DCL					DC<7:0>				xxxx xxxx	սսսս սսսս
D94h	PWM1DCH					DC<15:8>				xxxx xxxx	սսսս սսսս
D95h	PWM1PRL					PR<7:0>				xxxx xxxx	นนนน นนนเ
D96h	PWM1PRH					PR<15:8>				xxxx xxxx	นนนน นนนเ
D97h	PWM10FL					OF<7:0>				xxxx xxxx	uuuu uuuu
D98h	PWM10FH					OF<15:8>				xxxx xxxx	սսսս սսսս
D99h	PWM1TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
D9Ah	PWM1TMRH					TMR<15:8>				xxxx xxxx	uuuu uuuu
D9Bh	PWM1CON	EN	—	OUT	POL	MODI	E<1:0>		_	0-00 00	0-00 00
D9Ch	PWM1INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
D9Dh	PWM1INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
D9Eh	PWM1CLKCON	—		PS<2:0>		—	—	CS<	<1:0>	-000 -000	-00000
D9Fh	PWM1LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DA0h	PWM10FCON	—	OFM	<1:0>	OFO	—	—	OFS	<1:0>	-000 -000	-00000
DA1h	PWM2PHL					PH<7:0>				xxxx xxxx	uuuu uuuu
DA2h	PWM2PHH		PH<15:8>							xxxx xxxx	uuuu uuuu
DA3h	PWM2DCL		DC<7:0>							xxxx xxxx	uuuu uuuu
DA4h	PWM2DCH		DC<15:8>							xxxx xxxx	uuuu uuuu
DA5h	PWM2PRL	PR<7:0>							xxxx xxxx	սսսս սսսս	
DA6h	PWM2PRH	PR<15:8>							xxxx xxxx	uuuu uuuu	
DA7h	PWM2OFL	OF<7:0>								xxxx xxxx	սսսս սսսս
DA8h	PWM2OFH					OF<15:8>				xxxx xxxx	սսսս սսսս
DA9h	PWM2TMRL					TMR<7:0>				xxxx xxxx	սսսս սսսս
DAAh	PWM2TMRH					TMR<15:8>				xxxx xxxx	uuuu uuuu

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	Bank 27 (Continued)										
DC9h	PWM4TMRL				-	TMR<7:0>				xxxx xxxx	uuuu uuuu
DCAh	PWM4TMRH				Т	MR<15:8>				xxxx xxxx	uuuu uuuu
DCBh	PWM4CON	EN	—	OUT	POL	MODE	E<1:0>	_	—	0000 00	0000 00
DCCh	PWM4INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DCDh	PWM4INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
DCEh	PWM4CLKCON	—		PS<2:0>		_	—	CS∢	<1:0>	-000 -000	-00000
DCFh	PWM4LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DD0h	PWM40FCON	—	OFM	<1:0>	OFO	_	—	OFS	<1:0>	-000 -000	-00000
DD1h to DEFh	_	Unimplemer	Inimplemented							_	
Bank 28											
E0Ch											
E0Eh	-	Unimplemen	ited							—	_
E0Fh	PPSLOCK	—	—	_	—	_	_	—	PPSLOCKED	0	0
E10h	INTPPS	_	_	_		•	INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS	_	_	_			T0CKIPPS<4:0>	>		0 0010	u uuuu
E12h	T1CKIPPS	_	_	_			T1CKIPPS<4:0>	`		0 0101	u uuuu
E13h	T1GPPS	_	_	_			T1GPPS<4:0>			0 0100	u uuuu
E14h	CWG1INPPS	_							0 0010	u uuuu	
E15h	RXPPS	— — — RXPPS<4:0>						1 0101	u uuuu		
E16h	CKPPS	_	— — — CKPPS<4:0>						1 0101	u uuuu	
E17h	ADCACTPPS	ADCACTPPS<4:0>						1 0101	u uuuu		
E18h to E6Fh	_	Unimplemer	Inimplemented							—	_

TABLE 3-15: SPECIAL EUNCTION DEGISTED SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

DS40001782C-page 45

U-0	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q		
—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Condition	al				
bit 7	•	ted: Read as '	0'						
bit 6	PLLR 4x PLL	•							
	1 = 4x PLL i 0 = 4x PLL i								
bit 5		ator Start-up Ti	mer Status hit						
		•		FOSC<1.0>1	oits of the Confi	guration Word	s		
		from an intern				guiation word	5		
bit 4	HFIOFR: Hig	h-Frequency Ir	iternal Oscillate	or Ready bit					
	1 = HFINTO								
	0 = HFINTO	SC is not ready	1						
bit 3	•	h-Frequency In		or Locked bit					
		SC is at least 2 SC is not 2% a							
bit 2				illator Poady b	i+				
	1 = MFINTO	dium-Frequend	y memai Osc	illator Ready D	it.				
		SC is not read	/						
bit 1	LFIOFR: Low	LFIOFR: Low-Frequency Internal Oscillator Ready bit							
	1 = LFINTOS	SC is ready		-					
	0 = LFINTOS	SC is not ready							
bit 0	HFIOFS: Hig	h-Frequency Ir	ternal Oscillato	or Stable bit					
	1 = HFINTOSC is at least 0.5% accurate								
	0 = HFINTO	SC is not 0.5%	accurate						

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

12.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible and are the only pins on the device with this compatibility.

12.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 12-1.

EXAMPLE 12-1: PPS LOCK/UNLOCK SEQUENCE

the second destruction with a
; suspend interrupts
bcf INTCON,GIE
; BANKSEL PPSLOCK ; set bank
; required sequence, next 5 instructions
movlw 0x55
movwf PPSLOCK
movlw 0xAA
movwf PPSLOCK
; Set PPSLOCKED bit to disable writes or
; Clear PPSLOCKED bit to enable writes
bsf PPSLOCK, PPSLOCKED
; restore interrupts
bsf INTCON,GIE

12.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

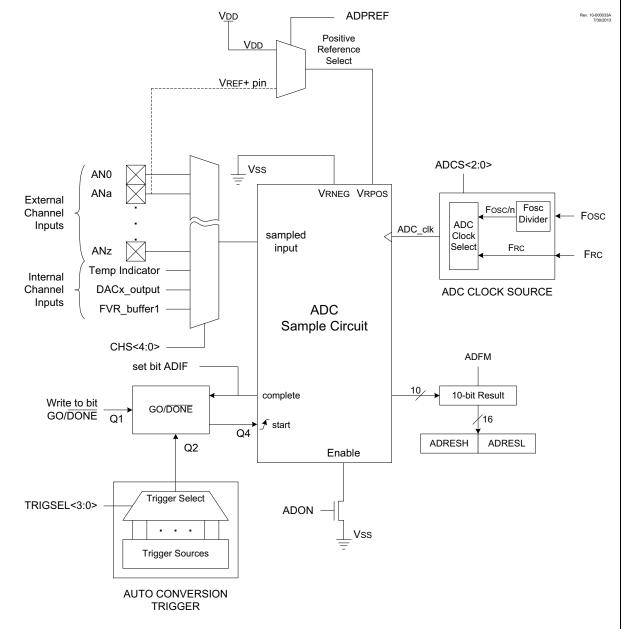
12.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

12.7 Effects of a Reset

A device Power-On-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 12-1.

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1574/5/8/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.


TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC. The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACxCON1 register.

The DAC output voltage can be determined by using Equation 17-1.

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 27-16.

17.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DACxOUTn) is not intended to drive an external load.

17.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

17.5 Effects of a Reset

A device Reset affects the following:

- DACx is disabled.
- DACx output voltage is removed from the DACxOUTn pin(s).
- The DACR<4:0> range select bits are cleared.

EQUATION 17-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

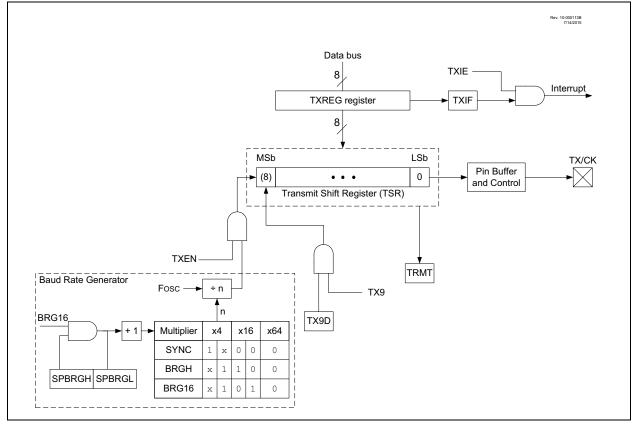
$$DACx_output = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE-$$

Note: See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 22-1 and Figure 22-2.

FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM

23.4 Reload Operation

Four of the PWM module control register pairs and one control bit are double buffered so that all can be updated simultaneously. These include:

- PWMxPHH:PWMxPHL register pair
- PWMxDCH:PWMxDCL register pair
- PWMxPRH:PWMxPRL register pair
- PWMxOFH:PWMxOFL register pair
- OFO control bit

When written to, these registers do not immediately affect the operation of the PWM. By default, writes to these registers will not be loaded into the PWM operating buffer registers until after the arming conditions are met. The arming control has two methods of operation:

- · Immediate
- Triggered

The LDT bit of the PWMxLDCON register controls the arming method. Both methods require the LDA bit to be set. All four buffer pairs will load simultaneously at the loading event.

23.4.1 IMMEDIATE RELOAD

When the LDT bit is clear then the immediate mode is selected and the buffers will be loaded at the first period event after the LDA bit is set. Immediate reloading is used when a PWM module is operating stand-alone or when the PWM module is operating as a master to other slave PWM modules.

23.4.2 TRIGGERED RELOAD

When the LDT bit is set then the Triggered mode is selected and a trigger event is required for the LDA bit to take effect. The trigger source is the buffer load event of one of the other PWM modules in the device. The triggering source is selected by the LDS<1:0> bits of the PWMxLDCON register. The buffers will be loaded at the first period event following the trigger event. Triggered reloading is used when a PWM module is operating as a slave to another PWM and it is necessary to synchronize the buffer reloads in both modules.

Note 1: The buffer load operation clears the LDA bit.

2: If the LDA bit is set at the same time as PWMxTMR = PWMxPR, the LDA bit is ignored until the next period event. Such is the case when triggered reload is selected and the triggering event occurs simultaneously with the target's period event

23.5 Operation in Sleep Mode

Each PWM module will continue to operate in Sleep mode when either the HFINTOSC or LFINTOSC is selected as the clock source by PWMxCLKCON<1:0>.

23.6 Interrupts

Each PWM module has four independent interrupts based on the phase, duty cycle, period, and offset match events. The interrupt flag is set on the rising edge of each of these signals. Refer to Figures 23-8 and 23-12 for detailed timing diagrams of the match signals.

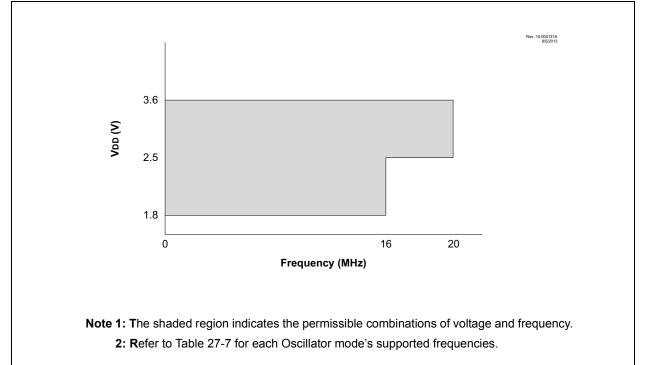
23.7 Register Definitions: PWM Control

Long bit name prefixes for the 16-bit PWM peripherals are shown in Table 23-1. Refer to **Section 1.1 "Register and Bit Naming Conventions**" for more information

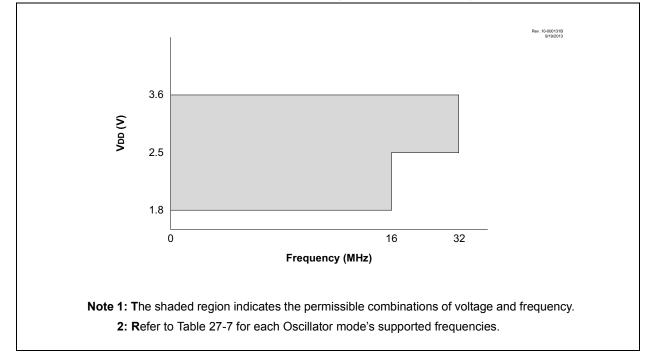
TABLE 23-1:

Peripheral	Bit Name Prefix
PWM1	PWM1
PWM2	PWM2
PWM3	PWM3
PWM4	PWM4

REGISTER 23-1: PWMxCON: PWM CONTROL REGISTER


R/W-0/0	U-0	R/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EN	—	OUT	POL	MODE<1:0>		—	_
bit 7							bit 0

Legend:			
HC = Bit i	s cleared by ha	rdware	HS = Bit is set by hardware
R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is	set	'0' = Bit is cleared	
bit 7	EN: PWM	Module Enable bit	
		le is enabled	
	0 = Modu	le is disabled	
bit 6	Unimplen	nented: Read as '0'	
bit 5	OUT: Outp	out State of the PWM module	
bit 4	POL: PWI	M Output Polarity Control bit	
	1 = PWM	output active state is low	
	0 = PWM	output active state is high	
bit 3-2	MODE<1:	0>: PWM Mode Control bits	
	11 = Cent	er-Aligned mode	
	10 = Togg	le On Match mode	
	01 = Set (On Match mode	
	00 = Stan	dard PWM mode	


bit 1-0 Unimplemented: Read as '0'

PIC16(L)F1574/5/8/9

FIGURE 27-2: VOLTAGE FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C, PIC16LF1574/5/8/9 ONLY

TABLE 27-4: I/O PORTS

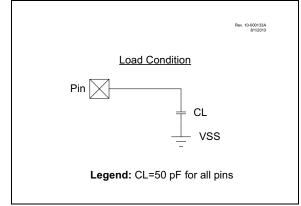
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D030		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D030A			_		0.15 VDD	V	$1.8V \le V \text{DD} \le 4.5V$			
D031		with Schmitt Trigger buffer	_		0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$			
		with I ² C levels	_	_	0.3 Vdd	V				
		with SMbus levels	_		0.8	V	$2.7V \le V\text{DD} \le 5.5V$			
D032		MCLR	_		0.2 VDD	V				
	VIH									
		I/O PORT:								
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	_	-	V	$1.8V \le V\text{DD} \le 4.5V$			
D041		with Schmitt Trigger buffer	0.8 Vdd	_	—	V	$2.0V \le V \text{DD} \le 5.5 V$			
		with I ² C levels	0.7 Vdd	_	—	V				
		with SMbus levels	2.1	_	—	V	$2.7V \le V\text{DD} \le 5.5V$			
D042		MCLR	0.8 Vdd	_	—	V				
	lı∟	Input Leakage Current ⁽¹⁾					·			
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C			
			—	± 5	± 1000	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 125°C			
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 85°C			
	IPUR	Weak Pull-up Current					·			
D070*			25	100	200	μΑ	VDD = 3.3V, VPIN = VSS			
			25	140	300	μA	VDD = 5.0V, VPIN = VSS			
	Vol	Output Low Voltage								
D080		I/O Ports	_	_	0.6	v	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V			
D090	Voн	Output High Voltage								
		I/O Ports	Vdd - 0.7	_	_	v	Іон = 3.5 mA, VDD = 5V Іон = 3 mA, VDD = 3.3V Іон = 1 mA, VDD = 1.8V			
		Capacitive Loading Specifications on Output Pins								
D101A*	CIO	All I/O pins	_	_	50	pF				

These parameters are characterized but not tested.

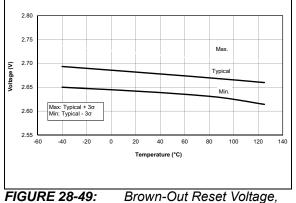
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


27.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

T							
F	Frequency	Т	Time				
Lowercase letters (pp) and their meanings:							
рр							
CC	CCP1	OSC	CLKIN				
ck	CLKOUT	rd	RD				
CS	CS	rw	RD or WR				
di	SDIx	SC	SCKx				
do	SDO	SS	SS				
dt	Data in	tO	ТОСКІ				
io	I/O PORT	t1	T1CKI				
mc	MCLR	wr	WR				
Uppero	Uppercase letters and their meanings:						
S							
F	Fall	Р	Period				
Н	High	R	Rise				
I	Invalid (High-impedance)	V	Valid				
L	Low	Z	High-impedance				

FIGURE 27-4: LOAD CONDITIONS

PIC16(L)F1574/5/8/9

BORV = 0.

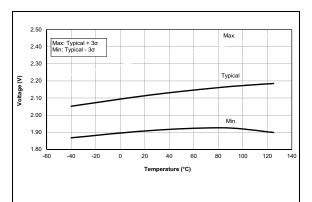
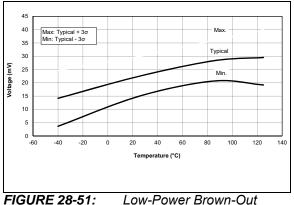
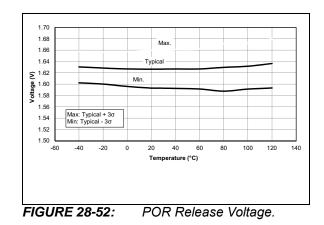



FIGURE 28-50: Low-Power Brown-Out Reset Voltage, LPBOR = 0.


Max.

Typical

Temperature (°C)

Min.

Reset Hysteresis, LPBOR = 0.

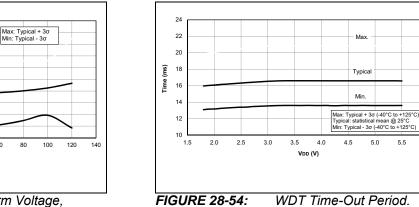


FIGURE 28-53: POR Rearm Voltage, PIC16F1574/5/8/9 Only.

-40

-20 0 20 40 60 80

1.54 1.52

1.50

1.48 **S**^{1.46} 1.44 1.42

1.40

1.38

1.36

1.34

-60

5.0 5.5 6.0

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

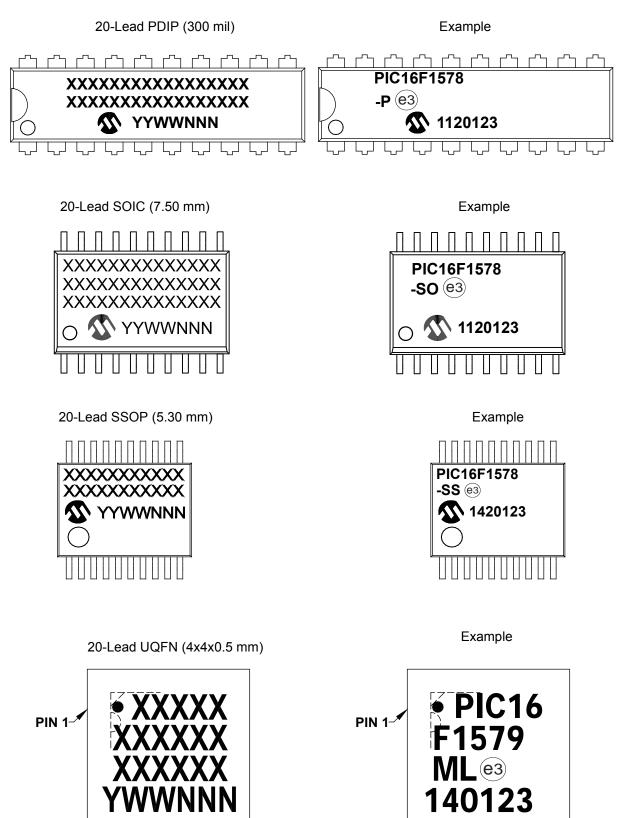
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

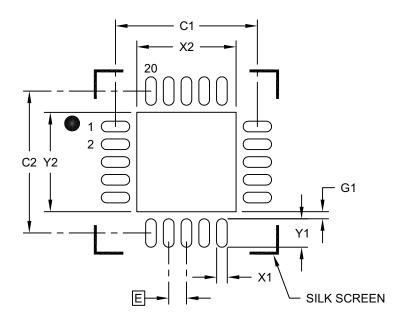
The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer


The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Package Marking Information (Continued)

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			2.80
Optional Center Pad Length	Y2			2.80
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.80
Contact Pad to Center Pad (X20)	G1	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2255A

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0190-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.