

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1578-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Packages	PDIP	SOIC	TSSOP	SSOP	UQFN
PIC16(L)F1574	•	•	•		•
PIC16(L)F1575	•	•	•		•
PIC16(L)F1578	•	•		•	•
PIC16(L)F1579	•	•		•	•

Note: Pin details are subject to change.

TABLE 1-3: PIC16(L)F1578/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC1/AN5/C1IN1-/C2IN1-	RC1	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN5	AN		ADC Channel input.
	C1IN1-	AN		Comparator negative input.
	C2IN1-	AN	-	Comparator negative input.
RC2/AN6/C1IN2-/C2IN2-	RC2	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN6	AN		ADC Channel input.
	C1IN2-	AN		Comparator negative input.
	C2IN2-	AN		Comparator negative input.
RC3/AN7/C1IN3-/C2IN3-	RC3	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN7	AN		ADC Channel input.
	C1IN3-	AN	_	Comparator negative input.
	C2IN3-	AN		Comparator negative input.
RC4/ADCACT ⁽¹⁾	RC4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	ADCACT	TTL/ST	_	ADC Auto-conversion Trigger input.
RC5	RC5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
OUT ⁽²⁾	C1OUT	—	CMOS	Comparator output.
	C2OUT	—	CMOS	Comparator output.
	PWM10UT	—	CMOS	PWM1 output.
	PWM2OUT	—	CMOS	PWM2 output.
	PWM3OUT	_	CMOS	PWM3 output.
	PWM4OUT	_	CMOS	PWM4 output.
	CWG1A	_	CMOS	Complementary Output Generator Output A.
	CWG1B	_	CMOS	Complementary Output Generator Output B.
	TX/CK	—	CMOS	USART asynchronous TX data/synchronous clock output.
	DT ⁽³⁾	—	CMOS	USART synchronous data output.
VDD	Vdd	Power		Positive supply.
Vss	Vss	Power	_	Ground reference.

Open-Drain Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C Schmitt Trigger input with I²C = HV = High Voltage

XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-6: PIC16(L)F1579 MEMORY MAP, BANKS 0-7

000h Core Registers (Table 3-2) 080h Core Registers (Table 3-2) 100h Core Registers (Table 3-2) 180h Core Registers (Table 3-2) 200h Core Registers (Table 3-2) 300h Subscription (Table 3-2) Subscription (Table 3-2) Subscription (Table 3-2) Subscrint (Table 3-2) <t< th=""><th>3ANK7</th></t<>	3ANK7
Core Registers (Table 3-2)Core Registers (Table 3-2)Co	
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh 00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONB 38Dh 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110H - 190h - 210h - 290h - 310h	e Registers
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh 00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONB 38Dh 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 30Fh - 38Fh 010h - 090h - 110h	able 3-2)
OOCh PORTA OBCh TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch ODCONA 30Ch SLRCONA 38Ch 00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh ODCONB 30Dh SLRCONA 38Ch 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h -	
OODA PORTB OBDA TRISB 10DA LATB 18DA ANSELB 20DA WPOB 28DA ODCONB 30DA SLRCONB 38DA 00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh ODCONC 30Eh SLRCONC 38Eh 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
OOEn PORTC OBEN TRSC 10En LATC 18En ANSELC 20En WPUC 28En ODCONC 30En SLRCONC 38En 00Fh - 08Fh - 10Fh - 18Fh - 20Fh - 28Fh - 30Fh - 38Fh 010h - 090h - 110h - 190h - 210h - 290h - 310h - 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
O0Fh O0Fh 10Fh 18Fh 20Fh 28Fh 30Fh 38Fh 010h 090h 110h 190h 210h 290h 310h 390h 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h 291h 311h 391h	INLVLC
010n - 090n - 110n - 190n - 210n - 290n - 310n - 390n 011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 211h - 291h - 311h - 391h	
011n PIR1 091n PIE1 111n CM1CON0 191n PMADRL 211n — 291n — 311n — 391n 391n	
0120 PIRZ 0920 PIEZ 1120 CM1C0N1 1920 PMADRH 2120 - 2920 - 3120 - 3920	
013h PIR3 093h PIE3 113h CM2CON0 193h PMDAIL 213h — 293h — 313h — 393h	IOCAF
014h — 094h — 114h CM2C0N1 194h PMDA1H 214h — 294h — 314h — 394h	IOCBP
0150 TMRU 0950 OPTION_REG 1150 CMOUT 1950 PMCON1 2150 - 2950 - 3150 - 3950	
0160 IMR1L 0960 PCON 1160 BORCON 1960 PMCON2 2160 — 2960 — 3160 — 3960	IOCBE
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON ⁽¹⁾ 217h — 297h — 317h — 397h	IOCCP
018h <u>T1CON</u> 098h <u>OSCTUNE</u> 118h <u>DACCON0</u> 198h <u>—</u> 218h <u>—</u> 298h <u>—</u> 318h <u>—</u> 398h <u>—</u> 38h <u>—</u> 38h <u>—</u> 38h <u>—</u> 38h <u>—</u>	IOCCN
019h <u>T1GCON</u> 099h <u>OSCCON</u> 119h <u>DACCON1</u> 199h <u>RCREG</u> 219h <u> </u> 299h <u> </u> 319h <u> </u> 399h	IOCCF
01Ah <u>TMR2</u> 09Ah <u>OSCSTAT</u> 11Ah <u> </u>	
01Bh PR2 09Bh ADRESL 11Bh — 19Bh SPBRGL 21Bh — 29Bh — 31Bh — 39Bh _ 39Bh	
01Ch <u>T2CON</u> 09Ch <u>ADRESH</u> 11Ch <u> </u>	_
01Dh 09Dh ADCON0 11Dh 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh	
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh 29Eh 31Eh 39Eh	
01Fh 09Fh ADCON2 11Fh 19Fh BAUDCON 21Fh 29Fh 31Fh 39Fh	—
020h 0A0h 120h 1A0h 220h 2A0h 320h 3A0h	
General General General General General General General	General
Purpose Purpose Purpose Purpose Purpose Purpose Purpose	Purpose
Register R	Register
of Bytes of Bytes of Bytes of Bytes of Bytes	Jo Dytes
06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh 3EFh	
	10000000
Common RAM Accesses A	0h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1579.

TABLE 3-11: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 27

		Bank 27	
	D8Ch		
	D8Dh	—	
	D8Eh	PWMEN	
	D8Fh	PWMLD	
	D90h	PWMOUT	
	D91h	PWM1PHL	
	D92h	PWM1PHH	
	D93h	PWM1DCL	
	D94h	PWM1DCH	
	D95h	PWM1PRL	
	D96h	PWM1PRH	
	D97h	PWM10FL	
	D98h	PWM10FH	
	DOON	PWM1TMRI	
	DOON	PWM1TMRH	
	DORH	PWM1CON	
	DaCh	PWM1INTE	
	DOOP		
	DaDu		
	D9Eh		
	D9Fn	PWWILDCON	
	DAUN	PWWIDFCON	
	DA1h	PWW2PHL	
	DA2h	PWW2PHH	
	DA3h	PWM2DCL	
	DA4h	PWM2DCH	
	DA5h	PWM2PRL	
	DA6h	PWM2PRH	
	DA7h	PWM2OFL	
	DA8h	PWM2OFH	
	DA9h	PWM2TMRL	
	DAAh	PWM2TMRH	
	DABh	PWM2CON	
	DACh	PWM2INTE	
	DADh	PWM2INTF	
	DAEh	PWM2CLKCON	
	DAFh	PWM2LDCON	
	DB0h	PWM2OFCON	
	DB1h	PWM3PHL	
	DB2h	PWM3PHH	
	DB3h	PWM3DCL	
	DB4h	PWM3DCH	
	DB5h	PWM3PRL	
	DB6h	PWM3PRH	
	DB7h	PWM30FL	
	DB8h	PWM30FH	
	DB9h	PWM3TMRL	
	DBAh	PWM3TMRH	
	DBBh	PWM3CON	
	DBCh	PWM3INTE	
	DBDh	PWM3INTF	
	DBEh	PWM3CLKCON	
	DBFh	PWM3LDCON	
	DC0h	PWM30FC0N	
	DC1h	PWM4PHI	
	DC2h	PWM4PHH	
	DC2h		
	DC4II DC5h		
	DCSI		
	DC/n		
	DC9h		
	DCAh		
	DCBh	PWW4CON	
	DCCh	PWW4IN1E	
	DCDh	PWM4INTF	
	DCEh	PWM4CLKCON	
	DCFh	PWM4LDCON	
	DD0h	PWM40FC0N	
	DD1h		
	DEFh	—	
Logendy	= L Inimr	lemented data momony l	ocations read as 'o'
Legenu.	- 011114	semented data memory i	Jourions, 10au as 0.

TABLE 3-12: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 28-29 MAP

	Bank 28		Bank 29
E0Ch	—	E8Ch	_
E0Dh	_	E8Dh	_
E0Eh	_	E8Eh	
E0Fh	PPSLOCK	E8Fh	_
E10h	INTPPS	E90h	RA0PPS
F11h	TOCKIPPS	F91h	RA1PPS
E12h	TICKIPPS	E92h	RA2PPS
E13h	TIGPPS	F03h	
E14h	CWG1PPS	E00h	PA/PPS
E15h	DVDDS	E05h	DA5DDS
E16h	CKPPS	E96h	-
		EOTh	
E19b	ADCACIFF3	Eash	—
E10h		EOOh	
		EQAN	
		EORh	—
		Eapli	
E1Ch	_	E9Ch	RB4PPS(')
E1Dh		E9Dh	RB5PPS ⁽¹⁾
E1Eh	_	E9Eh	RB6PPS ⁽¹⁾
F1Fh	_	FOFh	RB7PPS(1)
E20h	_	FAOh	RCOPPS
E21h		EA1h	RC1PPS
E22h		EA2h	RC2PPS
E22h		EA2h	PC3PPS
E24h		EA4h	PC/PPS
E25h		EASh	
E2011		EASI	
E26N	_	EAGU	RC6PPS(")
E27h		EA7h	RC7PPS(")
E28h	_	EA8h	—
E29h	_	EA9h	—
E2Ah	_	EAAh	—
E2Bh	—	EABh	—
E2Ch	_	EACh	—
E2Dh	_	EADh	—
E2Eh	—	EAEh	—
E2Fh	_	EAFh	—
E30h	_	EB0h	—
E31h	—	EB1h	—
E32h		EB2h	—
E33h	_	EB3h	_
E34h	_	EB4h	_
E35h		EB5h	_
E36h		EB6h	_
E37h	_	EB7h	_
E38h		EB8h	_
E39h		EB9h	
E3Ah		EBAh	
E3Bh	—	EBBh	_
E3Ch	_	EBCh	_
E3Dh	_	EBDh	_
E3Eh	_	EBEh	_
E3Fh		EBFh	
E40h		EC0h	
	_		—
E6Fh		EEFh	
l egend:	= Unimpleme	nted data	memory locations

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
10Ch	LATA	_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB ⁽¹⁾	LATB7	LATB6	LATB5	LATB4	—	—	—	—	xxxx	xxxx
10Eh	LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	XXXX XXXX
10Fh	—	Unimpleme	nted						•	_	_
110h	—	Unimpleme	nted							_	_
111h	CM1CON0	C10N	C10UT	_	C1POL	—	C1SP	C1HYS	C1SYNC	00-0 -100	00-0 -100
112h	CM1CON1	C1INTP	C1INTN	C1PC	CH<1:0>	—		C1NCH<2:0>		0000 -000	0000 -000
113h	CM2CON0	C2ON	C2OUT	_	C2POL	—	C2SP	C2HYS	C2SYNC	00-0 -100	00-0 -100
114h	CM2CON1	C2INTP	C2INTN	C2PC	CH<1:0>	—		C2NCH<2:0>		0000 -000	0000 -000
115h	CMOUT	_	_	_	_	—	—	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	BORFS	_	_	—	—	—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF	/R<1:0>	ADFV	R<1:0>	0000 00p0	0q00 0000
118h	DACCON0	DACEN	_	DACOE	_	DACPS	SS<1:0>	—	—	0-0- 00	0-0- 00
119h	DACCON1	_	_	_			DACR<4:0>			0 0000	0 0000
11Ah to 11Fh	_	Unimplemented						_	_		

PIC16(L)F1574/5/8/9

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	—		—	—	1111	1111
20Eh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh to 21Fh	_	Unimpleme	Unimplemented								—
Bank 5											
28Ch	ODCONA	_	_	ODA5	ODA4	—	ODA2	ODA1	ODA0	00 -000	00 -000
28Dh	ODCONB ⁽¹⁾	ODB7	ODB6	ODB5	ODB4	—	-	—	—	0000	0000
28Eh	ODCONC	ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000 0000	0000 0000
28Fh to 29Fh	_	Unimpleme	nted							_	_
Bank 6											
30Ch	SLRCONA	—	—	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	11 -111	11 -111
30Dh	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	—		—	—	1111	1111
30Eh	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
30Fh to 31Fh	_	Unimpleme									—

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Note 1: PIC16(L)F1578/9 only.

2: PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0
	C2IF	C1IF	_	_		_	_
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6	C2IF: Compare	rator C2 Interru	ıpt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 5	C1IF: Compare	rator C1 Interru	ıpt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt is	s not pending					
bit 4-0	Unimplemen	ted: Read as '	Ο'				
Note: In	nterrupt flag bits a	re set when an	interrupt				
C	ondition occurs, re	egardless of the	e state of				
its	s corresponding e	enable bit or th	e Global				
II re	niemupi Enable b paister User softv	n, GIE 01 me vare should en	sure the				
a	ppropriate interrug	ot flag bits are c	lear prior				
to	enabling an inter	rupt.	1° °				

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCAF	—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	143
IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	143
IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	143
IOCBP ⁽²⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	144
IOCBN ⁽²⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	-	-	_	144
IOCBF ⁽²⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	-	-	_	144
IOCCP	IOCCP7 ⁽²⁾	IOCCP6 ⁽²⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	145
IOCCN	IOCCN7 ⁽²⁾	IOCCN6 ⁽²⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	145
IOCCF	IOCCF7 ⁽²⁾	IOCCF6 ⁽²⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	145
TRISA	—	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	120
TRISC	TRISC7 ⁽²⁾	TRISC7 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
				<u></u>					

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1578/9 only.

16.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "ADC Acquisition Requirements".

EXAMPLE 16-1: ADC CONVERSION

<pre>;This code block configures the ADC ;for polling, Vdd and Vss references, FRC ;oscillator and AN0 input. ; ; ;Conversion start & polling for completion ; are included.</pre>								
	100011							
BANKSEL	ADCONI							
MOVLW	B.11110000.	Right Justily, FRC						
MOUTUE	100011	, oscillator						
MOVWF	ADCONI	, vad and vss vrei+						
BANKSEL	TRISA TRISA	'						
BSF	IRISA, U	, Set RAU to input						
BANKSEL	ANSEL	'						
BSF	ANSEL,U	, Set RAU to analog						
BANKSEL	WPUA WDUA O							
BCF	WPUA,U	, Disable weak						
DANKCET	A DOOMO	,pull-up on RAU						
BANKSEL	ADCONU D(0000001)							
MOVLW	B,0000001,	Select channel ANU						
MOVWE	ADCONU	Furn ADC On						
CALL	SampleTime	Acquisiton delay						
BSF	ADCONU, ADGO	Start conversion						
BTFSC	ADCON0, ADGO	;Is conversion done?						
GOTO	Ş-1	;No, test again						
BANKSEL	ADRESH	i						
MOVF	ADRESH,W	;Read upper 2 bits						
MOVWF	RESULTHI	;store in GPR space						
BANKSEL	ADRESL	;						
MOVF	ADRESL,W	;Read lower 8 bits						
MOVWF	RESULTLO	;Store in GPR space						

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
CxINTP	CxINTN	CxPCI	H<1:0>	_		CxNCH<2:0>	
bit 7		•		·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
L:1 7							
DIT /	CXINIP: Con	interrunt flag	ipt on Positive	Going Edge E	nable bits		
	0 = No interr	upt flag will be	set on a positiv	ve going edge	of the CxOUT	bit	
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge	Enable bits		
	1 = The CxIF	interrupt flag v	will be set upor	n a negative go	oing edge of the	e CxOUT bit	
	0 = No interr	upt flag will be	set on a negat	ive going edge	e of the CxOUT	bit	
bit 5-4	CxPCH<1:0>	: Comparator F	Positive Input C	Channel Select	t bits		
	11 = CxVP c	onnects to VSS	Noltago Rofo				
	01 = CxVP co	onnects to DAC	C Voltage Refe	rence			
	00 = CxVP co	onnects to CxII	N+ pin				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	CxNCH<1:0>	: Comparator I	Negative Input	Channel Sele	ct bits		
	111 = CxVN	connects to GI	ND				
	110 = CxVN	connects to F	R Voltage Ref	erence			
	101 = Reser 100 = Reser	ved ved					
	011 = CxVN	connects to C	dN3- pin				
	010 = CxVN	connects to C>	dN2- pin				
	001 = CxVN	connects to C	dN1- pin				
	000 = CXVN	connects to C	kinu- pin				

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	_	—	—	—	—	MC2OUT	MC10UT
bit 7		•		•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

		0.4030.804	0402030	030030303	01	000308	04	020304) 0.402 034	040302	0640	sperioriae	4.74	jo (orgaziok	e (030.	Kovi
0	sod	(TUNUNUNU)	pununun.	, nunun,		numunu,	- 	aunun.	(nununu)	n an star star star star star star star star	n ja	.p.o.o.	n.,	(funununu	nunun.	in de la composition de la composition Composition de la composition de la comp
		- Biê skê by e						·					: :		Georad	
8803	8 98)		······································	4												· · · · · · · · · · · · · · · · · · ·
ROCOT	- 555 S			· · · · · · · · · · · · · · · · · · ·			Uliz	: [[]]]		, ,,			gerefe C			:
	:	3				; ;		, N			•		; ,,	; ;;		
2.	0.287] ;				inne V	;; ;				Olyanad d	00 (e)	Çeser Ress	e de la	șces?)*	······
	UII.				/////	///////////////////////////////////////	9777						11111			9111111
30006	(X).	100008780	1.55508598.503	498 99699 999 V	800	: 03 :5 363										

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	X	e şeştetçe (erşetşe	1304(0 \$0	20302	01	303 204	40.404,0460	809,080,909	03649	246030364	je teztera	22
0	80 (j	www.www.		u NU NU TU			MAUNA.	NYUNU	WW,	unununu.	pununun	u,
	, i	- BR Sec by Week		2					1.1	AND (AND)	. Cieccad	ż
- 523	888			······································					1	<i></i>		
Service Service		· · · · · · · · · · · · · · · · · · ·										
34/4073	1:55:52			4 4		Symmetry			lla siz	18-1		5
:	aria t	*		4							4.	3
		Sincy Con	evania Exe	cuted	Steep	Bods (Cikered	dus in Dier Re	60 GÙ	3608887G*		~

Auto 3: If the wake-up event requires long confluence warm-up fore, the reconstitute bearing of the VrUit bit can constructed the organic signal is all antive. This requestes should not denote an the presence of Q circles.

 $\Omega^{*}_{\rm c}$. The 2004-ABTE measure is idea where the Velot hit is and

23.2 PWM Modes

PWM Modes are selected with MODE<1:0> bits of the PWMxCON register (Register 23-1).

In all PWM modes an offset match event can also be used to synchronize the PWMxTMR in three offset modes. See **Section 23.3 "Offset Modes"** for more information.

23.2.1 STANDARD MODE

The Standard mode (MODE = 00) selects a single phase PWM output. The PWM output in this mode is determined by when the period, duty cycle, and phase counts match the PWMxTMR value. The start of the duty cycle occurs on the phase match and the end of the duty cycle occurs on the duty cycle match. The period match resets the timer. The offset match can also be used to synchronize the PWMxTMR in the offset modes. See **Section 23.3 "Offset Modes"** for more information.

Equation 23-1 is used to calculate the PWM period in Standard mode.

Equation 23-2 is used to calculate the PWM duty-cycle ratio in Standard mode.

EQUATION 23-1: PWM PERIOD IN STANDARD MODE

$$Period = \frac{(PWMxPR + 1) \cdot Prescale}{PWMxCLK}$$

EQUATION 23-2: PWM DUTY CYCLE IN STANDARD MODE

$$Duty Cycle = \frac{(PWMxDC - PWMxPH)}{PWMxPR + 1}$$

A detailed timing diagram for Standard mode is shown in Figure 23-4.

23.2.2 SET ON MATCH MODE

The Set On Match mode (MODE = 01) generates an active output when the phase count matches the PWMxTMR value. The output stays active until the OUT bit of the PWMxCON register is cleared or the PWM module is disabled. The duty cycle count has no effect in this mode. The period count only determines the maximum PWMxTMR value above which no phase matches can occur.

The PWMxOUT bit can be used to set or clear the output of the PWM in this mode. Writes to this bit will take place on the next rising edge of the PWM_clock after the bit is written.

A detailed timing diagram for Set On Match is shown in Figure 23-5.

23.2.3 TOGGLE ON MATCH MODE

The Toggle On Match mode (MODE = 10) generates a 50% duty cycle PWM with a period twice as long as that computed for the standard PWM mode. Duty cycle count has no effect in this mode. The phase count determines how many PWMxTMR periods after a period event the output will toggle.

Writes to the OUT bit of the PWMxCON register will have no effect in this mode.

A detailed timing diagram for Toggle On Match is shown in Figure 23-6.

23.2.4 CENTER-ALIGNED MODE

The Center-Aligned mode (MODE = 11) generates a PWM waveform that is centered in the period. In this mode the period is two times the PWMxPR count. The PWMxTMR counts up to the period value then counts back down to 0. The duty cycle count determines both the start and end of the active PWM output. The start of the duty cycle occurs at the match event when PWMxTMR is incrementing and the duty cycle ends at the match event when PWMxTMR is decrementing. The incrementing match value is the period count minus the duty cycle count. The decrementing match value is the incrementing match value plus 1.

Equation 23-3 is used to calculate the PWM period in Center-Aligned mode.

EQUATION 23-3: PWM PERIOD IN CENTER-ALIGNED MODE

$$Period = \frac{(PWMxPR + 1) \cdot Prescale \cdot 2}{PWMxCLK}$$

Equation 23-4 is used to calculate the PWM duty cycle ratio in Center-Aligned mode

EQUATION 23-4: PWM DUTY CYCLE IN CENTER-ALIGNED MODE

$$Duty Cycle = \frac{PWMxDC \cdot 2}{(PWMxPR + 1) \cdot 2}$$

Writes to PWMxOUT will have no effect in this mode.

A detailed timing diagram for Center-Aligned mode is shown in Figure 23-7.

R/W-0/0	0 R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
LDA ⁽¹⁾	LDT	_	_	_	_	LDS<	<1:0>	
bit 7						•	bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
u = Bit is u	unchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is	set	'0' = Bit is clea	ared					
bit 7 LDA: Load Buffer Armed bit ⁽¹⁾ If LDT = 1: 1 = Load the OFx, PHx, DCx and PRx buffers at the end of the period when the selected trigger occur 0 = Do not load buffers/load has completed If LDT = 0: 1 = Load OF, PH, DC and PR buffers at the end of the current period 0 = Do not load buffers or load has completed bit 6 LDT: Load Buffer on Trigger bit 1 = Load outfers on trigger enabled 0 = Load on trigger disabled Load the OFx, PHx, DCx and PRx buffers at the end of every period after the selected trigger occur Reload internal double buffers at the end of current period							trigger occurs. rigger occurs.	
bit 5-2	Unimplemen	ted: Read as ')'					
bit 1-0	t 1-0 LDS<1:0>: Load Trigger Source Select bits $11 = LD4_{trigger}^{(2)}$ $10 = LD3_{trigger}^{(2)}$ $01 = LD2_{trigger}^{(2)}$ $00 = LD1 trigger^{(2)}$							
Note 1:	This bit is cleared by the module after a reload operation. It can be cleared in software to clear an exit arming event.						ar an existing	

REGISTER 23-5: PWMxLDCON: PWM RELOAD TRIGGER SOURCE SELECT REGISTER

2: The LD_trigger corresponding to the PWM used becomes reserved.

25.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP[™] refer to the "*PIC16(L)F157x Memory Programming Specification*" (DS40001766).

25.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

25.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5** "**MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

25.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 25-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 25-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information.

PIC16(L)F1574/5/8/9

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f				
Syntax:	[label] CLRF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	The contents of register 'f' are cleared and the Z bit is set.				

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

RETFIE	Return from Interrupt		
Syntax:	[label] RETFIE		
Operands:	None		
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$		
Status Affected:	None		
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.		
Words:	1		
Cycles:	2		
Example:	RETFIE		
	After Interrupt PC = TOS GIE = 1		

RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	$TOS \rightarrow PC$		
Status Affected:	None		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.		

RETLW	Return with literal in W	D 1 E		
Syntax:	[<i>label</i>] RETLW k		Rotate Left f through Carry	
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d	
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Status Affected:	None	Operation:	See description below	
		Status Affected:	С	
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is	
Words:	1		stored back in register T.	
Cycles:	2			
Example:	CALL TABLE; W contains table	Words:	1	
	;offset value • ;W now has table value	Cycles:	1	
TABLE	•	Example:	RLF REG1,0	
			Before Instruction	
	ADDWF PC /W = OIISEL RETLW k1 :Begin table		REG1 = 1110 0110	
	RETLW k2 ;		C = 0	
	•		After Instruction	
	•		REG1 = 1110 0110	
	•		W = 1100 1100	
	RETLW kn ; End of table			
	Before Instruction W = 0x07 After Instruction W = value of k8			

27.0 ELECTRICAL SPECIFICATIONS

27.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1574/5/8/9	-0.3V to +6.5V
PIC16LF1574/5/8/9	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins0.3V	to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C$	85 mA
on VDD pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C$	85 mA
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 27-6: "Thermal Characteristics" to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

27.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
СС	CCP1	OSC	CLKIN
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	SC	SCKx
do	SDO	SS	SS
dt	Data in	t0	ТОСКІ
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Uppercase letters and their meanings:			
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 27-4: LOAD CONDITIONS

PIC16(L)F1574/5/8/9

Fosc = 500 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-14: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1574/5/8/9 Only.

Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-16: IDD Maximum, HFINTOSC Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-17: IDD Typical, HFINTOSC Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-18: IDD Maximum, HFINTOSC Mode, PIC16F1574/5/8/9 Only.