

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1578-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DAC1OUT1/	RA0	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
ICSPDAT	AN0	AN	_	ADC Channel input.
	C1IN+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
ICSPCLK	AN1	AN	—	ADC Channel input.
	VREF+	AN	—	Voltage Reference input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	ICSPCLK	ST	—	ICSP Programming Clock.
RA2/AN2/T0CKI ⁽¹⁾ /CWG1IN ⁽¹⁾ /	RA2	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
INT	AN2	AN	—	ADC Channel input.
	TOCKI	TTL/ST	—	Timer0 clock input.
	CWG1IN	TTL/ST	—	CWG complementary input.
	INT	TTL/ST	_	External interrupt.
RA3/VPP/MCLR	RA3	TTL/ST	_	General purpose input with IOC and WPU.
	Vpp	HV	_	Programming voltage.
	MCLR	ST	—	Master Clear with internal pull-up.
RA4/AN3/T1G ⁽¹⁾ /CLKOUT	RA4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN3	AN	—	ADC Channel input.
	T1G	TTL/ST	—	Timer1 Gate input.
	CLKOUT	CMOS/OD	CMOS	Fosc/4 output.
RA5/CLKIN/T1CKI ⁽¹⁾	RA5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	CLKIN	CMOS	—	External clock input (EC mode).
	T1CKI	TTL/ST	—	Timer1 clock input.
RC0/AN4/C2IN+	RC0	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN4	AN	—	ADC Channel input.
	C2IN+	AN	_	Comparator positive input.
RC1/AN5/C1IN1-/C2IN1-	RC1	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN5	AN	—	ADC Channel input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	—	Comparator negative input.
RC2/AN6/C1IN2-/C2IN2-	RC2	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN6	AN	_	ADC Channel input.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
RC3/AN7/C1IN3-/C2IN3-	RC3	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN7	AN	—	ADC Channel input.
	C1IN3-	AN	—	Comparator negative input.
	C2IN3-	AN	—	Comparator negative input.

|--|

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-8:PIC16(L)F1575/9 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers (Table 3-2)
40Bh		48Bh	(10010-0-2)	50Bh	(10010-0-2)	58Bh	(10010-0-2)	60Bh	(10010 0 2)	68Bh	(10010 0 2)	70Bh	(10010 0 2)	78Bh	(10010-0-2)
40Ch	—	48Ch	_	50Ch		58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	—	48Dh	—	50Dh		58Dh		60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh		58Eh		60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	—	48Fh	—	50Fh		58Fh		60Fh	—	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h	CWG1DBR	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	—	513h		593h		613h	—	693h	CWG1CON0	713h	—	793h	—
414h	—	494h	—	514h		594h		614h	—	694h	CWG1CON1	714h	—	794h	—
415h	—	495h		515h	—	595h	_	615h	—	695h	CWG1CON2	715h	—	795h	_
416h	—	496h	_	516h	—	596h	—	616h	—	696h	—	716h	—	796h	—
417h	—	497h	—	517h		597h		617h	—	697h	—	717h	—	797h	—
418h	—	498h	_	518h		598h		618h	—	698h	—	718h	—	798h	—
419h	—	499h	_	519h		599h		619h	—	699h	—	719h	—	799h	—
41Ah	—	49Ah		51Ah	—	59Ah	_	61Ah	—	69Ah	—	71Ah	—	79Ah	_
41Bh	—	49Bh		51Bh	—	59Bh	_	61Bh	—	69Bh	—	71Bh	—	79Bh	_
41Ch	—	49Ch	—	51Ch		59Ch		61Ch	—	69Ch	—	71Ch	—	79Ch	—
41Dh	—	49Dh	_	51Dh	—	59Dh	—	61Dh	—	69Dh	—	71Dh	—	79Dh	—
41Eh	—	49Eh	_	51Eh		59Eh		61Eh	—	69Eh	—	71Eh	—	79Eh	—
41Fh	—	49Fh		51Fh		59Fh		61Fh	—	69Fh	—	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose Register	6A0h		720h		7A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	63Fh 640h	32 Bytes		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh	Reau as 0	6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh						
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOREN	BORV ⁽³⁾	STVREN	PLLEN
		bit 13				·	bit 8
U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1
—	—	—	—	_	PPS1WAY	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	P = Program	mable bit	U = Unimplem	nented bit, read	l as '1'	
'0' = Bit is	cleared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13	LVP: Low-Vo	oltage Programi	ming Enable bit	₍ (1)			
	1 = ON -	- Low-voltage	programming	enabled. MC	LR/VPP pin f	unction is MC	CLR. MCLRE
		Configuration	bit is ignored.				
	0 = OFF -	- High Voltage	on MCLR/VPP	must be used fo	or programming	J	
bit 12	DEBUG: De	bugger Mode bi	(²)				
	1 = OFF -	- In-Circuit Debu	lgger disabled;	ICSPCLK and	ICSPDAT are (general purpose	e I/O pins.
L:1 4 4			ugger enabled,		ICSPDAT ale C		; debugger.
DICTI	1 - OFF	LOW-POWER Bro	wn-out Reset E	is disabled			
	0 = ON -	- Low-power Bro	own-out Reset	is enabled			
bit 10	BORV: Brow	n-out Reset Vo	Itage Selection	bit ⁽³⁾			
	1 = LOW -	- Brown-out Res	set voltage (VB	OR), low trip poi	nt selected		
	0 = HIGH -	- Brown-out Res	set voltage (VB	OR), high trip po	oint selected		
bit 9	STVREN: St	tack Overflow/U	nderflow Reset	t Enable bit			
	1 = ON -	 Stack Overflow 	v or Underflow	will cause a Re	set		
	0 = OFF -	 Stack Overflow 	v or Underflow	will not cause a	Reset		
bit 8	PLLEN: PLL	Enable bit					
	1 = ON -	- 4xPLL enabled	3				
h# 7 0	0 = OFF -		u 1,				
	Unimpleme						
bit 2	PPS1WAY: H		ne-Way Set Er	hable bit			4
	$\perp = ON$	PPSLOCK	off can only be	set once atter a	in uniocking sec	Juence is execu-	tea; once
	0 = OFF	The PPSLOCK	bit can be set a	and cleared as r	needed (provide	d an unlocking s	sequence is
	-	executed)					
Note 4:	This hit serves to		to (0) where ===		o io optored de		
NOTE 1:		in Configuration	U U when pro	gramming mod		i LVP.	
2:	THE DEBUG bit	in Configuration	i vvoras is man	ageo automatic	any by device of	Jevelopment to	ois incluaing

REGISTER 4-2: CONFIGURATION WORD 2

- debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
- **3:** See VBOR parameter for specific trip point voltages.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
	<u>If BOREN <1:0> in Configuration Words ≠ 01</u> :
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	 1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

11.1 PORTA Registers

11.1.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as '1'. Example 11-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 11-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.1.2 DIRECTION CONTROL

The TRISA register (Register 11-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.1.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 11-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.1.4 SLEW RATE CONTROL

The SLRCONA register (Register 11-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.1.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 11-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.1.6 ANALOG CONTROL

The ANSELA register (Register 11-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

```
; This code example illustrates
; initializig the PORTA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTA
                     ;
CLRF
         PORTA
                     ;Init PORTA
BANKSEL LATA
                     ;Data Latch
CLRF
        T.ATA
                     ;
BANKSEL ANSELA
                     ;
CLRF
        ANSELA
                     ;digital I/O
BANKSEL TRISA
MOVLW
        B'00111000' ;Set RA<5:3> as inputs
MOVWF
        TRISA
                     ;and set RA<2:0> as
                     ;outputs
```

11.5 PORTC Registers

11.5.1 DATA REGISTER

PORTC is a 6-bit wide bidirectional port in the PIC16(L)F1574/5 device and 8-bit wide bidirectional port in the PIC16(L)F1578/9 device. The corresponding data direction register is TRISC (Register 11-18). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-17) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

11.5.2 DIRECTION CONTROL

The TRISC register (Register 11-18) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.5.3 INPUT THRESHOLD CONTROL

The INLVLC register (Register 11-24) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.5.4 OPEN DRAIN CONTROL

The ODCONC register (Register 11-22) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.5.5 SLEW RATE CONTROL

The SLRCONC register (Register 11-23) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.5.6 ANALOG CONTROL

The ANSELC register (Register 11-20) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.5.7 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELC register. Digital output functions may continue to control the pin when it is in Analog mode.

16.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "ADC Acquisition Requirements".

EXAMPLE 16-1: ADC CONVERSION

<pre>;This code block configures the ADC ;for polling, Vdd and Vss references, FRC ;oscillator and AN0 input. ; ;Conversion start & polling for completion ; are included.</pre>								
	100011							
BANKSEL	ADCONI							
MOVLW	B.11110000.	Right Justily, FRC						
MOUTUE	100011	, oscillator						
MOVWF	ADCONI	, vad and vss vrei+						
BANKSEL	TRISA TRISA	'						
BSF	IRISA, U	, Set RAU to input						
BANKSEL	ANSEL	'						
BSF	ANSEL,U	, Set RAU to analog						
BANKSEL	WPUA WDUA O							
BCF	WPUA,U	, Disable weak						
DANKCET	A DOOMO	,pull-up on RAU						
BANKSEL	ADCONU D(0000001)							
MOVLW	B,0000001,	Select channel ANU						
MOVWE	ADCONU	Furn ADC On						
CALL	SampleTime	Acquisiton delay						
BSF	ADCONU, ADGO	Start conversion						
BTFSC	ADCON0, ADGO	;Is conversion done?						
GOTO	Ş-1	;No, test again						
BANKSEL	ADRESH	i						
MOVF	ADRESH,W	;Read upper 2 bits						
MOVWF	RESULTHI	;store in GPR space						
BANKSEL	ADRESL	;						
MOVF	ADRESL,W	;Read lower 8 bits						
MOVWF	RESULTLO	;Store in GPR space						

18.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0			
CxON	CxOUT	—	CxPOL	_	CxSP	CxHYS	CxSYNC			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7 CxON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power										
bit 6	CxOUT: Comparator Output bit $\frac{\text{If CxPOL} = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN}$ $0 = CxVP > CxVN$ $\frac{\text{If CxPOL} = 0 \text{ (non-inverted polarity):}}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$									
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	CxPOL: Com	parator Output	Polarity Select	t bit						
	1 = Comparat	tor output is inv	verted							
	0 = Comparat	tor output is no	t inverted							
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	1 = Comparat 0 = Comparat	arator Speed/F tor mode in noi tor mode in low	ower Select bit rmal power, hig v-power, low-sp	her speed eed						
bit 1	CxHYS: Com	parator Hyster	esis Enable bit							
	1 = Compara 0 = Compara	tor hysteresis tor hysteresis	enabled disabled							
bit 0	CxSYNC: Co	mparator Outp	ut Synchronous	s Mode bit						
	1 = Compara Output up 0 = Compara	itor output to T pdated on the f itor output to T	Fimer1 and I/O falling edge of 1 imer1 and I/O p	pin is synch limer1 clock in is asynchr	ronous to chang source. ronous	ges on Timer1	clock source.			

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
CxINTP	CxINTN	CxPCI	H<1:0>	_		CxNCH<2:0>	
bit 7		•		·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
L:1 7							
DIT /	CXINIP: Con	interrunt flag	ipt on Positive	Going Edge E	nable bits		
	0 = No interr	upt flag will be	set on a positiv	ve going edge	of the CxOUT	bit	
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge	Enable bits		
	1 = The CxIF	interrupt flag v	will be set upor	n a negative go	oing edge of the	e CxOUT bit	
	0 = No interr	upt flag will be	set on a negat	ive going edge	e of the CxOUT	bit	
bit 5-4	CxPCH<1:0>	: Comparator F	Positive Input C	Channel Select	t bits		
	11 = CxVP c	onnects to VSS	Noltago Rofo				
	01 = CxVP co	onnects to DAC	C Voltage Refe	rence			
	00 = CxVP co	onnects to CxII	N+ pin				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	CxNCH<1:0>	: Comparator I	Negative Input	Channel Sele	ct bits		
	111 = CxVN	connects to GI	ND				
	110 = CxVN	connects to F	R Voltage Ref	erence			
	101 = Reser 100 = Reser	ved ved					
	011 = CxVN	connects to C	dN3- pin				
	010 = CxVN	connects to C>	dN2- pin				
	001 = CxVN	connects to C	dN1- pin				
	000 = CXVN	connects to C	kinu- pin				

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	_	—	—	—	—	MC2OUT	MC10UT
bit 7		•		•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

23.0 16-BIT PULSE-WIDTH MODULATION (PWM) MODULE

The Pulse-Width Modulation (PWM) module generates a pulse width modulated signal determined by the phase, duty cycle, period, and offset event counts that are contained in the following registers:

- PWMxPH register
- PWMxDC register
- PWMxPR register
- PWMxOF register

Figure 23-1 shows a simplified block diagram of the PWM operation.

Each PWM module has four modes of operation:

- Standard
- · Set On Match
- Toggle On Match
- · Center-Aligned

For a more detailed description of each PWM mode, refer to **Section 23.2** "**PWM Modes**".

Each PWM module has four offset modes:

- Independent Run
- · Slave Run with Synchronous Start
- · One-Shot Slave with Synchronous Start
- Continuous Run Slave with Synchronous Start and Timer Reset

Using the offset modes, each PWM module can offset its waveform relative to any other PWM module in the same device. For a more detailed description of the offset modes refer to **Section 23.3 "Offset Modes"**.

Every PWM module has a configurable reload operation to ensure all event count buffers change at the end of a period thereby avoiding signal glitches. Figure 23-2 shows a simplified block diagram of the reload operation. For a more detailed description of the reload operation, refer to Section **Section 23.4 "Reload Operation"**.

FIGURE 23-1: 16-BIT PWM BLOCK DIAGRAM

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
_		PS<2:0>		_	_	CS<	CS<1:0>	
bit 7	·			·			bit 0	
r								
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res							Resets	
'1' = Bit is se	et	'0' = Bit is clear	red					
bit 7	Unimplemen	ted: Read as '0'						
bit 6-4	bit 6-4 PS<2:0>: Clock Source Prescaler Select bits 111 = Divide clock source by 128 110 = Divide clock source by 64 101 = Divide clock source by 32 100 = Divide clock source by 16 011 = Divide clock source by 8 010 = Divide clock source by 4 001 = Divide clock source by 2 000 = No Prescaler							
bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 11 = Reserve 10 = LFINTC 01 = HFINTC 00 = FOSC	ted: Read as '0' ick Source Select ed ISC (continues to DSC (continues to	bits operate during operate during	Sleep) J Sleep)				

REGISTER 23-4: PWMxCLKCON: PWM CLOCK CONTROL REGISTER

Note: There are no long and short bit name variants for the following three mirror registers								
REGISTER 23-17: PWMEN: PWMEN BIT ACCESS REGISTER								
U-0	U-0	U-0	U-	0 R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	
	_	_		- PWM4EN	J_A PWM3EN	A PWM2EN_A	PWM1EN_A	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writa	ble bit	U = Unim	plemented bit, re	ad as '0'		
u = Bit is unc	hanged	x = Bit is u	unknown	-n/n = Val	ue at POR and E	3OR/Value at all	other Resets	
'1' = Bit is set	t	'0' = Bit is	cleared					
bit 7-4	Unimplem	ented: Read	as '0'					
bit 3-0	PWMyFN	PWM4/PWM	3/PWM2/P\\	/M1 Enable hits				
	Mirror copy	of FN bits in	PWMxCON-	<7>				
	winter copy							
REGISTER	23-18: PW	MLD: LD B		REGISTER				
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—		—	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **PWMxLDA:** PWM4/PWM3/PWM2/PWM1 LD bits Mirror copy of LD bits in PWMxLDCON<7>

REGISTER 23-19: PWMOUT: PWMOUT BIT ACCESS REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **PWMxOUT:** PWM4/PWM3/PWM2/PWM1 Output bits Mirror copy of OUT bits in PWMxCON<5>

FIGURE 24-1: SIMPLIFIED CWG BLOCK DIAGRAM

PIC16(L)F1574/5/8/9

24.12 Register Definitions: CWG Control

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN	—	—	GxPOLB	GxPOLA	—	_	GxCS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	on	
bit 7	GxEN: CWG	k Enable bit					
	1 = Module is	s enabled					
		s disabled					
bit 6-5	Unimplemen	ted: Read as '),				
bit 4	GxPOLB: CV	VGxB Output P	olarity bit				
	1 = Output is	inverted polar	ty				
	0 = Output is	normal polarity	ý				
bit 3	GxPOLA: CV	VGxA Output P	olarity bit				
	1 = Output is	inverted polar	ty				
	0 = Output is	normal polarity	ý				
bit 2-1	Unimplemen	ted: Read as '	כ'				
bit 0	GxCS0: CWC	Sx Clock Sourc	e Select bit				
	1 = HFINTOS	SC					
	0 = Fosc						

REGISTER 24-1: CWGxCON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0			
GxASE	GxARSEN	_	_	GxASDSC2	GxASDSC1	GxASDSPPS	—			
bit 7			•			•	bit 0			
Legend:										
R = Readable	bit	W = Writable	e bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all oth	er Resets			
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on condit	ion				
bit 7	GxASE: Auto	-Shutdown Ev	ent Status bi	t						
	1 = An auto-s	shutdown eve	nt has occurre	ed						
	0 = No auto-	shutdown event has occurred								
bit 6	 1 = An auto-shutdown event has occurred 0 = No auto-shutdown event has occurred GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled 									
	bit 6 GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled									
	0 = Auto-rest	tart is disabled	1							
bit 5-4	Unimplemen	ted: Read as	'0'							
bit 3	GxASDSC2:	CWG Auto-sh	utdown on C	omparator C2 I	Enable bit					
	1 = Shutdow	n when Comp	arator C2 out	put (C2OUT_s	ync) is high					
	0 = Compara	0 = Comparator C2 output has no effect on shutdown								
bit 2	GxASDSC1:	CWG Auto-sh	utdown on C	omparator C1 I	Enable bit					
	1 = Shutdow	n when Comp	arator C1 out	put (C1OUT_s	ync) is high					
	0 = Compara	ator C1 output	has no effect	on shutdown						
bit 1	GxASDSPPS	: CWG Input	Pin Enable bi	t						
	1 = Shutdow	n when CWG	input pin (CV	/GxIN) is high						
	0 = CWG inp	out pin (CWGx	bit U = Unimplemented bit, read as '0' hown -n/n = Value at POR and BOR/Value at all other Resets ared q = Value depends on condition ent Status bit t has occurred t has occurred able bit D' itdown on Comparator C2 Enable bit rator C2 output (C2OUT_sync) is high has no effect on shutdown itdown on Comparator C1 Enable bit rator C1 output (C1OUT_sync) is high has no effect on shutdown in Enable bit put pin (CWGxIN) is high V) signal has no effect on shutdown D'							
bit 0	Unimplemen	ted: Read as	'0'							

REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2

FIGURE 28-43: HFINTOSC Accuracy Over Temperature, VDD = 1.8V, LF Devices Only.

FIGURE 28-44: HFINTOSC Accuracy Over Temperature, $2.3V \le VDD \le 5.5V$.

FIGURE 28-45: Brown-Out Reset Voltage, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-46: Brown-Out Reset Hysteresis, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-47: Brown-Out Reset Voltage, BORV = 1, PIC16F1574/5/8/9 Only.

FIGURE 28-48: Brown-Out Reset Hysteresis, BORV = 1, PIC16F1574/5/8/9 Only.

FIGURE 28-73: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 3.6V, LF Devices Only.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15