

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1578-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DAC1OUT/	RA0	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
ICSPDAT	AN0	AN	_	ADC Channel input.
	C1IN+	AN		Comparator positive input.
	DAC1OUT	—	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
ICSPCLK	AN1	AN		ADC Channel input.
	VREF+	AN	_	Voltage Reference input.
	C1IN0-	AN		Comparator negative input.
	C2IN0-	AN		Comparator negative input.
	ICSPCLK	ST	_	ICSP Programming Clock.
RA2/AN2/T0CKI ⁽¹⁾ /CWG1IN ⁽¹⁾ /	RA2	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
INT ⁽¹⁾	AN2	AN	_	ADC Channel input.
	TOCKI	TTL/ST	_	Timer0 clock input.
	CWG1IN	TTL/ST	_	CWG complementary input.
	INT	TTL/ST	_	External interrupt.
RA3/VPP/MCLR	RA3	TTL/ST	_	General purpose input with IOC and WPU.
	Vpp	HV	_	Programming voltage.
	MCLR	ST	_	Master Clear with internal pull-up.
RA4/AN3/T1G ⁽¹⁾ /CLKOUT	RA4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN3	AN	_	ADC Channel input.
	T1G	TTL/ST		Timer1 Gate input.
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/CLKIN/T1CKI ⁽¹⁾	RA5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	CLKIN	CMOS		External clock input (EC mode).
	T1CKI	TTL/ST		Timer1 clock input.
RB4/AN10	RB4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN10	AN	_	ADC Channel input.
RB5/AN11/RX ⁽¹⁾	RB5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN11	AN	_	ADC Channel input.
	RX	ST	_	USART asynchronous input.
RB6	RB6	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
RB7/CK	RB7	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	СК	ST	CMOS	USART synchronous clock.
RC0/AN4/C2IN+	RC0	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN4	AN	_	ADC Channel input.
	C2IN+	AN		Comparator positive input.
Legendu AN - Apolog ipput or or			I mootible innu	

TABLE 1-3: PIC16(L)F1578/9 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C levels

 HV = High Voltage
 XTAL = Crystal
 Levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.
 All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27 ((Continued)										
DABh	PWM2CON	EN	_	OUT	POL	MOD	E<1:0>	—	_	0-00 00	0-00 00
DACh	PWM2INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	000	000
DADh	PWM2INTF		—	—	_	OFIF	PHIF	DCIF	PRIF	000	000
DAEh	PWM2CLKCON			PS<2:0>		_	_	CS<	<1:0>	-000 -000	-00000
DAFh	PWM2LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DB0h	PWM2OFCON		OFM	<1:0>	OFO	—	—	OFS	<1:0>	-000 -000	-00000
DB1h	PWM3PHL					PH<7:0>				xxxx xxxx	uuuu uuuu
DB2h	PWM3PHH					PH<15:8>				xxxx xxxx	uuuu uuuu
DB3h	PWM3DCL					DC<7:0>				xxxx xxxx	uuuu uuuu
DB4h	PWM3DCH					DC<15:8>				xxxx xxxx	uuuu uuuu
DB5h	PWM3PRL					PR<7:0>				xxxx xxxx	uuuu uuuu
DB6h	PWM3PRH					PR<15:8>				xxxx xxxx	uuuu uuuu
DB7h	PWM3OFL					OF<7:0>				xxxx xxxx	uuuu uuuu
DB8h	PWM30FH					OF<15:8>				xxxx xxxx	uuuu uuuu
DB9h	PWM3TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
DBAh	PWM3TMRH				٦	FMR<15:8>				xxxx xxxx	uuuu uuuu
DBBh	PWM3CON	EN	—	OUT	POL	MOD	E<1:0>	—	—	0-00 00	0-00 00
DBCh	PWM3INTE		—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DBDh	PWM3INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	000	000
DBEh	PWM3CLKCON			PS<2:0>		—	—	CS<	<1:0>	-000 -000	-00000
DBFh	PWM3LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DC0h	PWM30FCON	_	OFM	<1:0>	OFO	—	_	OFS	<1:0>	-000 -000	-00000
DC1h	PWM4PHL		PH<7:0>							XXXX XXXX	uuuu uuuu
DC2h	PWM4PHH		PH<15:8>							xxxx xxxx	uuuu uuuu
DC3h	PWM4DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
DC4h	PWM4DCH		DC<15:8>							XXXX XXXX	uuuu uuuu
DC5h	PWM4PRL		PR<7:0> xx							XXXX XXXX	uuuu uuuu
DC6h	PWM4PRH					PR<15:8>				xxxx xxxx	uuuu uuuu
DC7h	PWM4OFL					OF<7:0>				xxxx xxxx	uuuu uuuu
DC8h	PWM40FH					OF<15:8>				xxxx xxxx	uuuu uuuu

PIC16(L)F1574/5/8/9

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

4.7 Register Definitions: Device ID

R R R R R R DEV<13:8> bit 13 bit 8 R R R R R R R R DEV<7:0> bit 7 bit 0

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

Legend:

R = Readable bit	
R = Readable bit	

'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **DEV<13:0>:** Device ID bits

Refer to Table 4-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.

Note 1: This location cannot be written.

REGISTER 4-4: REVISIONID: REVISION ID REGISTER⁽¹⁾

	R	R	R	R	R	R
			REV<1	3:8>		
	bit 13					bit 8
-	-	-	D	-	-	

R	R	R	R	R	R	R	R	
REV<7:0>								
bit 7 bit 0								

Legend:			
R = Readable bit			
'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **REV<13:0>:** Revision ID bits These bits are used to identify the device revision.

Note 1: This location cannot be written.

TABLE 4-1: DEVICE ID VALUES

DEVICE	Device ID	Revision ID
PIC16F1574	3000h	2xxxh
PIC16F1575	3001h	2xxxh
PIC16F1578	3002h	2xxxh
PIC16F1579	3003h	2xxxh
PIC16LF1574	3004h	2xxxh
PIC16LF1575	3005h	2xxxh
PIC16LF1578	3006h	2xxxh
PIC16LF1579	3007h	2xxxh

PIC16(L)F1574/5/8/9

2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: For minimum width of INT pulse, refer to AC specifications in Section 27.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to user IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3: FLASH PROGRAM

MEMORY UNLOCK SEQUENCE FLOWCHART

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:	USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)	
-------------	---	--

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h/8005h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL MOVLW MOVWF CLRF	PMADRL PROG_ADDR_LO PMADRL PMADRH	;;;;	Select correct Bank Store LSB of address Clear MSB of address
BSF BCF BSF NOP NOP BSF	PMCON1,CFGS INTCON,GIE PMCON1,RD INTCON,GIE	;;;;;;	Select Configuration Space Disable interrupts Initiate read Executed (See Figure 10-2) Ignored (See Figure 10-2) Restore interrupts
MOVF MOVWF MOVF MOVWF	PMDATL,W PROG_DATA_LO PMDATH,W PROG_DATA_HI	;;;;	Get LSB of word Store in user location Get MSB of word Store in user location

11.1.7 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0 "Peripheral Pin Select (PPS) Module"** for more information. Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELA register. Digital output functions may continue to control the pin when it is in Analog mode.

11.3 PORTB Registers (PIC16(L)F1578/9 only)

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.3.1 DIRECTION CONTROL

The TRISB register (Register 11-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.3.2 OPEN-DRAIN CONTROL

The ODCONB register (Register 11-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.3.3 SLEW RATE CONTROL

The SLRCONB register (Register 11-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.3.4 INPUT THRESHOLD CONTROL

The INLVLB register (Register 11-16) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 27-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.3.5 ANALOG CONTROL

The ANSELB register (Register 11-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.3.6 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information. Analog input functions, such as ADC and op amp inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions may continue to control the pin when it is in Analog mode.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xx	xPPS: PERIPHERAL xxx	INPUT SELECTION
-------------------	-----------------------------	-----------------

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
	_	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periphe	eral	
bit 7-5	Unimplement	ted: Read as 'd)'				
bit 4-3	xxxPPS<4:3>: Peripheral xxx Input PORT Selection bits 11 = Reserved. Do not use. 10 = Peripheral input is PORTC 01 = Peripheral input is PORTB ⁽²⁾ 00 = Peripheral input is PORTA						
bit 2-0 xxxPPS<2:0>: Peripheral xxx Input Bit Selection bits ⁽¹⁾ 111 = Peripheral input is from PORTx Bit 7 (Rx7) 110 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5) 100 = Peripheral input is from PORTx Bit 4 (Rx4) 011 = Peripheral input is from PORTx Bit 3 (Rx3) 010 = Peripheral input is from PORTx Bit 2 (Rx2) 001 = Peripheral input is from PORTx Bit 1 (Rx1) 000 = Peripheral input is from PORTx Bit 0 (Rx0)							

Note 1: See Table 12-1 for xxxPPS register list and Reset values.2: PIC16(L)F1578/9 only.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	
—	—	—			RxyPPS<4:0>			
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknow			iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 12-2 for the selection codes

'0' = Bit is cleared

1' = Bit is set

22.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 22-5:

ASYNCHRONOUS RECEPTION

PIC16(L)F1574/5/8/9

REGISTER 24-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

	DEAD	DAND 000					
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	_		CWGxDBR<5:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other				other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	CWGxDBR<	5:0>: Complem	entary Wavef	orm Generator	(CWGx) Rising	Counts	
	11 1111 = 6	3-64 counts of	dead band				
	11 1110 = 6	2-63 counts of	dead band				
	•						
	•						
	•						
	$00 \ 0010 = 2$	2-3 counts of de	ad band				

REGISTER 24-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			CWGxD	BF<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5-0	CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts
	11 1111 = 63-64 counts of dead band 11 1110 = 62-63 counts of dead band
	•

- •
- 00 0010 = 2-3 counts of dead band

00 0001 = 1-2 counts of dead band 00 0000 = 0 counts of dead band

- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

Mnemonic,		Description		Cycles	14-Bit Opcode				Status	Notes	
Oper	rands		Description		MSb			LSb	Affected	Notes	
	BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Ad	d W and f	1	00	0111	dfff	ffff	C, DC, Z	2	
ADDWFC	f, d	Ad	d with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2	
ANDWF	f, d	AN	ID W with f	1	00	0101	dfff	ffff	Z	2	
ASRF	f, d	Ar	thmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2	
LSLF	f, d	Lo	gical Left Shift	1	11	0101	dfff	ffff	C, Z	2	
LSRF	f, d	Lo	gical Right Shift	1	11	0110	dfff	ffff	C, Z	2	
CLRF	f	Cle	ear f	1	00	0001	lfff	ffff	Z	2	
CLRW	_	Cle	ear W	1	00	0001	0000	00xx	Z		
COMF	f, d	Co	mplement f	1	00	1001	dfff	ffff	Z	2	
DECF	f, d	De	crement f	1	00	0011	dfff	ffff	Z	2	
INCF	f, d	Inc	crement f	1	00	1010	dfff	ffff	Z	2	
IORWF	f, d	Inc	clusive OR W with f	1	00	0100	dfff	ffff	Z	2	
MOVF	f, d	Mo	ove f	1	00	1000	dfff	ffff	Z	2	
MOVWF	f	Mo	ove W to f	1	00	0000	1fff	ffff		2	
RLF	f, d	Ro	tate Left f through Carry	1	00	1101	dfff	ffff	С	2	
RRF	f, d	Ro	tate Right f through Carry	1	00	1100	dfff	ffff	С	2	
SUBWF	f, d	Su	btract W from f	1	00	0010	dfff	ffff	C, DC, Z	2	
SUBWFB	f, d	Su	btract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2	
SWAPF	f, d	Sv	/ap nibbles in f	1	00	1110	dfff	ffff		2	
XORWF	f, d	Ex	clusive OR W with f	1	00	0110	dfff	ffff	Z	2	
			BYTE ORIENTED SKIP	OPERATIO	ONS						
DECEST	f. d	De	crement f. Skip if 0	1(2)	0.0	1011	dfff	ffff		1.2	
INCES7	f. d	Inc	crement f. Skip if 0	1(2)	00	1111	dfff	ffff		1.2	
	, -									,	
	£ h	D#	BII-ORIENTED FILE REGIS			0.011	1 6 6 6	6666		0	
BCF	I, D f h		Set f	1	01	00000	DIII	LILL		2	
BSF	I, D	ы	Set I	1	01	dalu	DIII	IIII		2	
	BIT-ORIENTED SKIP OPERATIONS										
BTFSC	f, b	Bit	Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2	
BTFSS	f, b	Bit	Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2	
LITERAL OPERATIONS											
ADDLW	k	Ad	d literal and W	1	11	1110	kkkk	kkkk	C, DC, Z		
ANDLW	k	AN	ID literal with W	1	11	1001	kkkk	kkkk	Z		
IORLW	k	Inc	clusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLB	k	Mo	ove literal to BSR	1	00	0000	001k	kkkk			
MOVLP	k	Mo	ove literal to PCLATH	1	11	0001	1kkk	kkkk			
MOVLW	k	Mo	ove literal to W	1	11	0000	kkkk	kkkk			
SUBLW	k	Su	btract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z		
XORLW	k	Ex	clusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS\toPC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.				

RETLW	Return with literal in W	D 1 E					
Syntax:	[<i>label</i>] RETLW k		Rotate Left f through Carry				
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Status Affected:	None	Operation:	See description below				
Description:	The W register is loaded with the 8-bit	Status Affected:	С				
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1						
Cycles:	2						
Example:	CALL TABLE;W contains table	Words:	1				
	<pre>;offset value , W now has table value</pre>	Cycles:	1				
TABLE	•	Example:	RLF REG1,0				
			Before Instruction				
	ADDWF PC ;W = OIISEL RETLW k1 :Begin table		REG1 = 1110 0110				
	RETLW k2 ;		C = 0				
	•		After Instruction				
	•		REG1 = 1110 0110				
	•		W = 1100 1100				
	RETLW kn ; End of table						
	Before Instruction W = 0x07 After Instruction W = value of k8						

27.0 ELECTRICAL SPECIFICATIONS

27.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1574/5/8/9	-0.3V to +6.5V
PIC16LF1574/5/8/9	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins0.3V	to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C$	85 mA
on VDD pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C$	85 mA
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 27-6: "Thermal Characteristics" to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

27.3 DC Characteristics

TABLE 27-1:SUPPLY VOLTAGE

PIC16LF1574/5/8/9		Standard Operating Conditions (unless otherwise stated)						
PIC16F1574/5/8/9								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1)					
			1.5	—	—	V	Device in Sleep mode	
D002*			1.7	_	—	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage	ge ⁽²⁾					
			—	1.6	—	V		
D002A*			—	1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾	Je ⁽²⁾					
			—	0.8	—	V		
D002B*			—	1.5	—	V		
D003	VFVR	Fixed Voltage Reference Voltage	—	1.024	_	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-4 -4 -5	_	4 4 5	%	1x VFVR, $ADFVR = 01$, $VDD \ge 2.5V$ 2x VFVR, $ADFVR = 10$, $VDD \ge 2.5V$ 4x VFVR, $ADFVR = 11$, $VDD \ge 4.75V$	
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator	-4 -4 -5	_	4 4 5	%	$ \begin{array}{l} 1x \; VFVR, \; CDAFVR = \texttt{01}, \; VDD \geq 2.5V \\ 2x \; VFVR, \; CDAFVR = \texttt{10}, \; VDD \geq 2.5V \\ 4x \; VFVR, \; CDAFVR = \texttt{11}, \; VDD \geq 4.75V \end{array} $	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 27-3, POR and POR REARM with Slow Rising VDD.

3: PLL required for 32 MHz operation.

TABLE 27-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	—	×	ns	External Clock (EC)
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 28-31: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16LF1574/5/8/9 Only.

FIGURE 28-32: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16F1574/5/8/9 Only.

FIGURE 28-33: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16LF1574/5/8/9 Only.

FIGURE 28-35: VOH vs. IOH Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

FIGURE 28-34: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16F1574/5/8/9 Only.

FIGURE 28-36: VoL vs. IoL Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

FIGURE 28-67: Temperature Indicator Initial Offset, Low Range, Temp = 20°C, LF Devices Only.

FIGURE 28-68: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 5.5V, F Devices Only.

FIGURE 28-69: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 3.6V, F Devices Only.

FIGURE 28-71: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 1.8V, LF Devices Only.

FIGURE 28-70: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 3.0V, F Devices Only.

FIGURE 28-72: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 3.0V, LF Devices Only.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing No. C04-065C Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS			
Dimension Limit		MIN	NOM	MAX	
Number of Pins	Ν	14			
Pitch	е	1.27 BSC			
Overall Height	А	- 1.75			
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	I I	0.25	
Overall Width	Ш	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25 - 0.50			
Foot Length	L	0.40	I	1.27	
Footprint	L1	1.04 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	II.	8°	
Lead Thickness	С	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2