

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1578-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	PORTB ⁽¹⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	xxxx
00Eh	PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	xxxx xxxx
00Fh	—	Unimplemen	nted							_	_
010h	—	Unimplemen	nted							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	000000	000000
012h	PIR2	_	C2IF	C1IF	_	—	—	_	—	-00	-00
013h	PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	_	—	0000	0000
014h	—									—	—
015h	TMR0	Holding Register for the 8-bit Timer0 Count							xxxx xxxx	uuuu uuuu	
016h	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Count								xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Count								xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	—	T1SYNC	_	TMR10N	0000 -0-0	uuuu -u-u
019h	T1GCON	TMR1GE T1GPOL T1GTM T1GSPM T1GGO/ DONE T1GVAL T1GSS<1:0>							0000 0x00	uuuu uxuu	
01Ah	TMR2 Timer2 Module Register								0000 0000	0000 0000	
01Bh	PR2	Timer2 Period Register							1111 1111	1111 1111	
01Ch	T2CON	_	- T20UTPS<3:0> TMR20N T2CKPS<1:0>							-000 0000	-000 0000
01Dh	_	Unimplemented							_	_	
01Eh	—	Unimplemented								_	
01Fh	—	Unimplemer	nted							_	_

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

TABLE 3-15: S	SPECIAL FUNCTION REGISTER SUMMAI	RY (CONTINUED)
---------------	----------------------------------	----------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
18Ch	ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4	—	—	_	—	11	11
18Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplemen	nted							_	_
190h	_	Unimplemer	nted							_	_
191h	PMADRL	Flash Progra	Flash Program Memory Address Register Low Byte							0000 0000	0000 0000
192h	PMADRH								1000 0000	1000 0000	
193h	PMDATL	Flash Program Memory Read Data Register Low Byte							xxxx xxxx	uuuu uuuu	
194h	PMDATH	— Flash Program Memory Read Data Register High Byte							xx xxxx	uu uuuu	
195h	PMCON1	(3)	CFGS	CFGS LWLO FREE WRERR WREN WR RD					1000 x000	1000 q000	
196h	PMCON2	Flash Progra	am Memory (Control Regis	ster 2	•	•		•	0000 0000	0000 0000
197h	VREGCON ⁽²⁾	_	— — — — — VREGPM Reserved						01	01	
198h	_	Unimplemer	Unimplemented							_	_
199h	RCREG	USART Rec	USART Receive Data Register							0000 0000	0000 0000
19Ah	TXREG	USART Transmit Data Register							0000 0000	0000 0000	
19Bh	SPBRGL	Baud Rate Generator Data Register Low						0000 0000	0000 0000		
19Ch	SPBRGH	Baud Rate Generator Data Register High							0000 0000	0000 0000	
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend: x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Note 1: PIC16(L)F1578/9 only.

PIC16F1574/5/8/9 only.
 Unimplemented, read as '1'.

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input. CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has three power modes to select from through the Fosc bits in the Configuration Words:

- ECH High power, 4-20 MHz
- ECM Medium power, 0.5-4 MHz
- ECL Low power, 0-0.5 MHz

The Oscillator Start-up Timer (OST), when available, is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-On Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.2.7 32 MHz Internal Oscillator Frequency Selection

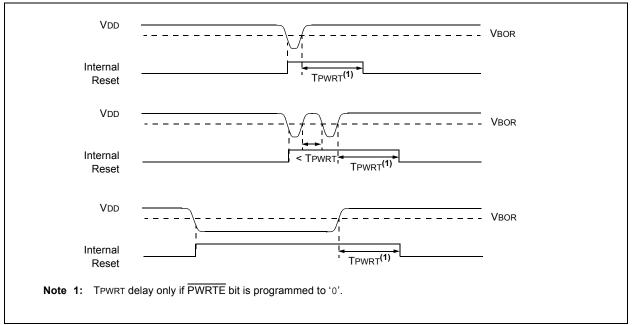
The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.8 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:


- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

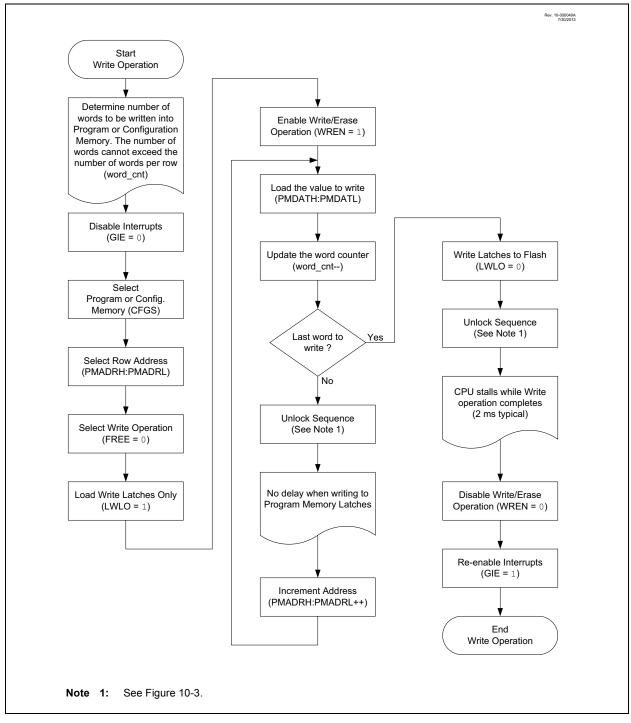
See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 27.0 "Electrical Specifications"**.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER


R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
	If BOREN <1:0> in Configuration Words <u>≠ 01</u> :
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive
Note di	DODEN 41/02 hits are leasted in Canfiguration Wards

Note 1: BOREN<1:0> bits are located in Configuration Words.

© 2016 Microchip Technology Inc.

PIC16(L)F1574/5/8/9

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

; This	write rout:	ine assumes the f	ollowing:
			starting at the address in DATA_ADDR
; 2. Ea	ach word of	data to be writt	en is made up of two adjacent bytes in DATA_ADDR,
; store	ed in little	e endian format	
; 3. A	valid star	ting address (the	Least Significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. AI	DDRH and ADI	DRL are located i	n shared data memory 0x70 - 0x7F (common RAM)
;			
	BCF	INTCON,GIE	; Disable ints so required sequences will execute properly
	BANKSEL	PMADRH	; Bank 3
	MOVF	ADDRH,W	; Load initial address
	MOVWF	PMADRH	;
	MOVF	ADDRL,W	;
	MOVWF	PMADRL	;
	MOVLW	_	; Load initial data address
	MOVWF	FSROL	;
	MOVLW	_	; Load initial data address
	MOVWF	FSR0H	i and a set
	BCF		; Not configuration space
	BSF		; Enable writes
TOOD	BSF	PMCON1,LWLO	; Only Load Write Latches
LOOP	MOUTH	FCDOLL	· Load first data buto into lower
	MOVIW MOVWF	FSR0++ PMDATL	; Load first data byte into lower :
	MOVWF MOVIW		' ; Load second data byte into upper
	MOVWF		;
	HOVWE	INDAIN	'
	MOVF	PMADRL,W	; Check if lower bits of address are '00000'
	XORLW		; Check if we're on the last of 32 addresses
	ANDLW		;
	BTFSC		; Exit if last of 32 words,
	GOTO	START_WRITE	;
	MOVLW		; Start of required write sequence:
	MOVWF		; Write 55h
ed	MOVLW		;
Required Sequence	MOVWF		; Write AAh
seq.	BSF		; Set WR bit to begin write
щω	NOP		; NOP instructions are forced as processor
	NOD		; loads program memory write latches
	NOP		;
	INCF	PMADRL, F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
START_V	VRITE		
	BCF	PMCON1,LWLO	; No more loading latches - Actually start Flash program
			; memory write
	MOUT	r r b	
	MOVLW		; Start of required write sequence:
0)	MOVWF MOVLW	PMCON2 0AAh	; Write 55h :
Required Sequence	MOVLW MOVWF		, ; Write AAh
inb	BSF		; Set WR bit to begin write
Sec	NOP		; NOP instructions are forced as processor writes
	1101		; all the program memory write latches simultaneously
	NOP		i to program memory.
			; After NOPs, the processor
			; stalls until the self-write process in complete
			; after write processor continues with 3rd instruction
	BCF		; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	—	—	—	—	127
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	_	_	128
LATB	LATB7	LATB6	LATB5	LATB4	—	—	_	_	126
ODCONB	ODB7	ODB6	ODB5	ODB4	—	—	_	_	128
PORTB	RB7	RB6	RB5	RB4	—	—	_	_	126
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	—	—	_	_	128
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	128
WPUB	WPUB7	WPUB6	WPUB5	WPUB4		—	_	_	127

	TABLE 11-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
--	-------------	--

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

12.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible and are the only pins on the device with this compatibility.

12.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 12-1.

EXAMPLE 12-1: PPS LOCK/UNLOCK SEQUENCE

the second destruction with a
; suspend interrupts
bcf INTCON,GIE
; BANKSEL PPSLOCK ; set bank
; required sequence, next 5 instructions
movlw 0x55
movwf PPSLOCK
movlw 0xAA
movwf PPSLOCK
; Set PPSLOCKED bit to disable writes or
; Clear PPSLOCKED bit to enable writes
bsf PPSLOCK, PPSLOCKED
; restore interrupts
bsf INTCON,GIE

12.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

12.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

12.7 Effects of a Reset

A device Power-On-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 12-1.

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

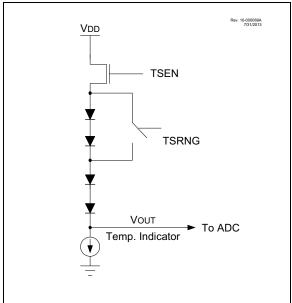
Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 16.0 "Analog-to-Digital Converter (ADC) Module**" for detailed information.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	158
ADCON1	ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>	159
ADCON2		TRIGSE	EL<3:0>		—	_	—		160
ADRESH	ADC Result Register High							161, 162	
ADRESL	ADC Result Register Low						161, 162		
ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
TRISA			TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	120
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	149

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203*
SPBRGL	BRG<7:0>							205*	
SPBRGH	BRG<15:8>						205*		
TXREG	EUSART Transmit Data Register						194		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

R/W-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN				
bit 7	•						bit C				
Legend:											
R = Readable	e bit	W = Writable	e bit	U = Unimplem							
u = Bit is unch	nanged	x = Bit is un	known	-n/n = Value at	POR and BC	DR/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is cl	eared								
bit 7		Auto-Baud Dete	ect Overflow bit								
Sit 1	Asynchrono										
		ud timer overflo	owed								
		ud timer did no	t overflow								
	<u>Synchronou</u> Don't care	<u>is mode</u> :									
bit 6		ceive Idle Flag I	oit								
	<u>Asynchrono</u>	•									
	1 = Receive										
		 0 = Start bit has been received and the receiver is receiving Synchronous mode: 									
	Don't care										
bit 5	Unimpleme	ented: Read as	·'0'								
bit 4	SCKP: Syne	chronous Clock	Polarity Select	bit							
	Asynchronous mode:										
			to the TX/CK pi data to the TX/0								
	Synchronous mode:										
			ng edge of the c ng edge of the c								
bit 3	BRG16: 16-	-bit Baud Rate	Generator bit								
		Baud Rate Generaud Rate Generation									
bit 2	Unimpleme	ented: Read as	'0'								
bit 1	WUE: Wake	WUE: Wake-up Enable bit									
	Asynchronous mode:										
	automat	ically clear afte	r RCIF is set.	lo character will	be received,	RCIF bit will be	set. WUE wil				
	0 = Receiver is operating normally <u>Synchronous mode</u> :										
	Don't care	is mode.									
bit 0	ABDEN: Auto-Baud Detect Enable bit										
		Asynchronous mode:									
	-		de is enabled (c	lears when auto	-baud is com	iplete)					
	0 = Auto-Ba	aud Detect mod				-					
		Synchronous mode:									
	Don't care	<u>io mode</u> .									

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

22.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,				
	the corresponding ANSEL bit must be				
	cleared for the receiver to function.				

22.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

22.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters

will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

22.5.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

22.5.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 23-7: PWMxPHH: PWMx PHASE COUNT HIGH REGISTER

bit 7-0 **PH<15:8>**: PWM Phase High bits Upper eight bits of PWM phase count

REGISTER 23-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	7:0>			
bit 7 bit 0						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PH<7:0>**: PWM Phase Low bits Lower eight bits of PWM phase count

Г

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- · Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- · Built-in support for Bugzilla issue tracker

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

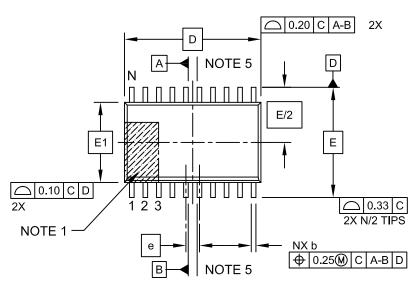
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

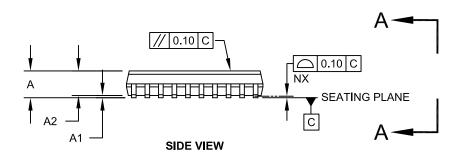
The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

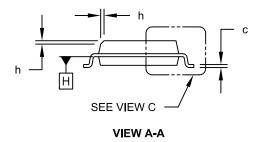
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer


The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-094C Sheet 1 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (2/2015)

Initial release of this document.

Revision B (09/2015)

Added Section 5.4: Clock Switching Before Sleep.

Updated Low-Power Features and Memory sections on cover page.

Updated Examples 3-2 and 16-1; Figures 8-1, 22-1, and 23-8 through 23-13; Registers 8-1, 23-6, 24-2, and 24-3; Sections 8.2.2, 16.2.6, 22.0, 23.3.3, 24.9.1.2, 24.11.1 and 27.1; and Tables 27-1, 27-2, 27-3, 27-8 and 27-11.

Revision C (01/2016)

Added graphs to chapter "DC and AC Characteristics Graphs and Charts". Other minor corrections.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support