E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3: 20-PIN PDIP, SOIC, SSOP

Note: See Table 4 for the pin allocation table.

TABLE 3-15:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

						•	,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
08Ch	TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	_	1111	1111
08Eh	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	nted							_	_
090h	_	Unimplemen	nted							—	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	TMR2IE	TMR1IE	000000	000000
092h	PIE2	—	C2IE	C1IE	—		—	—	_	-00	-00
093h	PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE		_	—	_	0000	0000
094h	_									-	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUI	N<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRC	CF<3:0>		—	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0q0 0q00	-ddd dddd
09Bh	ADRESL	ADC Result	IC Result Register Low						xxxx xxxx	uuuu uuuu	
09Ch	ADRESH	ADC Result	DC Result Register High						xxxx xxxx	uuuu uuuu	
09Dh	ADCON0	_			CHS<4:0>	•		GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>	•	—	_	ADPRE	F<1:0>	000000	000000
09Fh	ADCON2		TRIGSEL<3:0> —				_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

IADLL J	-13. 3FL			KLOIS I L							
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27	(Continued)										
DC9h	PWM4TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
DCAh	PWM4TMRH				I	⁻ MR<15:8>				xxxx xxxx	uuuu uuuu
DCBh	PWM4CON	EN	—	OUT	POL	MODI	E<1:0>	—	_	0000 00	0000 00
DCCh	PWM4INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	000	000
DCDh	PWM4INTF	—	—	—	—	OFIF	PHIF	DCIF	PRIF	000	000
DCEh	PWM4CLKCON	—		PS<2:0>		_	—	CS<	:1:0>	-000 -000	-00000
DCFh	PWM4LDCON	LDA	LDT	—	—	—	—	LDS	<1:0>	00000	0000
DD0h	PWM40FCON	—	OFM	<1:0>	OFO	—	—	OFS	<1:0>	-000 -000	-00000
DD1h to DEFh	_	Unimplemer	nimplemented							_	_
Bank 28											
E0Ch											
E0Eh	_	Unimplemen	ited							_	_
E0Fh	PPSLOCK	_	_	_	_	-	_	_	PPSLOCKED	0	0
E10h	INTPPS	_	_	_			INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS	_	_	_			T0CKIPPS<4:0	>		0 0010	u uuuu
E12h	T1CKIPPS	_	_	_			T1CKIPPS<4:0	>		0 0101	u uuuu
E13h	T1GPPS	_	_	_			T1GPPS<4:0>			0 0100	u uuuu
E14h	CWG1INPPS	_	—	_			CWGINPPS<4:0)>		0 0010	u uuuu
E15h	RXPPS	_	_	_			RXPPS<4:0>			1 0101	u uuuu
E16h	CKPPS	_	_	_			CKPPS<4:0>			1 0101	u uuuu
E17h	ADCACTPPS	_	1 0101 -						u uuuu		
E18h to E6Fh	_	Unimplemer	nted							_	_

TABLE 3-15: SPECIAL EUNCTION DEGISTED SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

DS40001782C-page 45

U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0
	C2IF	C1IF	_	_		_	_
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6	C2IF: Compare	rator C2 Interru	ıpt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 5	C1IF: Compare	rator C1 Interru	ıpt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt is	s not pending					
bit 4-0	Unimplemen	ted: Read as '	Ο'				
Note: In	nterrupt flag bits a	re set when an	interrupt				
C	ondition occurs, re	egardless of the	e state of				
its corresponding enable bit or the Global							
II re	niemupi Enable b paister User softw	n, GIE 01 me vare should en	sure the				
a	ppropriate interrug	ot flag bits are c	lear prior				
to	enabling an inter	rupt.	1° °				

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
Lawawala							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	1 = Low-Power Sleep mode enabled in Sleep ⁽²⁾

- Draws lowest current in Sleep, slower wake-up
 - 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F1574/5/8/9 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	143
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	143
IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	143
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIE2	—	C2IE	C1IE	—	—	—	—	—	88
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	—	—	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
PIR2	—	C2IF	C1IF	—	—	—	—	—	91
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	—	—	92
STATUS	—	—	—	TO	PD	Z	DC	С	23
WDTCON	—	—	WDTPS<4:0>				SWDTEN	99	

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL PMADRL
                             ; Select Bank for PMCON registers
            PROG_ADDR_LO
   MOVLW
                             ;
   MOVWF
            PMADRL
                             ; Store LSB of address
            PROG_ADDR_HI
   MOVLW
                              ;
   MOVWF
            PMADRH
                              ; Store MSB of address
   BCF
            PMCON1,CFGS
                             ; Do not select Configuration Space
   BSF
            PMCON1,RD
                              ; Initiate read
   NOP
                              ; Ignored (Figure 10-2)
   NOP
                              ; Ignored (Figure 10-2)
   MOVF
            PMDATL,W
                              ; Get LSB of word
   MOVWF
            PROG_DATA_LO
                             ; Store in user location
                             ; Get MSB of word
            PMDATH,W
   MOVF
   MOVWF
            PROG_DATA_HI
                             ; Store in user location
```

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7:

FLASH PROGRAM MEMORY MODIFY FLOWCHART

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC. The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

16.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "ADC Acquisition Requirements".

EXAMPLE 16-1: ADC CONVERSION

;This cod ;for poll ;oscillat ; ;Conversi ; are inc	de block confi ing, Vdd and cor and ANO in con start & po cluded.	gures the ADC Vss references, FRC nput. lling for completion
	100011	
BANKSEL	ADCONI	
MOVLW	B.11110000.	Right Justily, FRC
MOUTUE	100011	, oscillator
MOVWF	ADCONI	, vad and vss vrei+
BANKSEL	TRISA TRISA	'
BSF	IRISA, U	, Set RAU to input
BANKSEL	ANSEL	'
BSF	ANSEL,U	, Set RAU to analog
BANKSEL	WPUA WDUA O	
BCF	WPUA,U	, Disable weak
DANKCET	A DOOMO	,pull-up on RAU
BANKSEL	ADCONU D(0000001)	
MOVLW	B,0000001,	Select channel ANU
MOVWE	ADCONU	Furn ADC On
CALL	SampleTime	Acquisiton delay
BSF	ADCONU, ADGO	Start conversion
BTFSC	ADCON0, ADGO	;Is conversion done?
GOTO	Ş-1	;No, test again
BANKSEL	ADRESH	i
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	ADRESL	;
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

18.4 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 27.0 "Electrical Specifications"** for more information.

18.5 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 20.5 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.5.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from the Cx comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 20-1) for more information.

18.6 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- · CxON and CxPOL bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note:	Although a comparator is disabled, an
	interrupt can be generated by changing
	the output polarity with the CxPOL bit of
	the CMxCON0 register, or by switching
	the comparator on or off with the CxON bit
	of the CMxCON0 register.

18.7 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 27.0 "Electrical Specifications"** for more details.

22.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate.

The Auto-Baud Detect feature (see **Section 22.4.1 "Auto-Baud Detect"**) can be used to compensate for changes in the INTOSC frequency.

There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

REGISTER 23-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PR<15:8>**: PWM Period High bits Upper eight bits of PWM period count

REGISTER 23-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PR< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PR<7:0>**: PWM Period Low bits Lower eight bits of PWM period count

© 2016 Microchip Technology Inc

PIC16(L)F1574/5/8/9

TABLE 27-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions
AD01	NR	Resolution		—	10	bit	
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V
AD04	EOFF	Offset Error		±1	±2.5	LSb	VREF = 3.0V
AD05	Egn	Gain Error		±1	±2.0	LSb	VREF = 3.0V
AD06	Vref	Reference Voltage	1.8		Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)
AD07	VAIN	Full-Scale Range	Vss		VREF	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 28.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

FIGURE 28-7: IDD Typical, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-8: IDD Maximum, EC Oscillator, Medium Power Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-9: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-10: IDD Typical, EC Oscillator, High-Power Mode, Fosc = 32 kHz, PIC16F1574/5/8/9 Only.

FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1574/5/8/9 Only.

12 (**V**rl) 10 8 Typical 4 2 0 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.8 1.6 VDD (V) FIGURE 28-11: IDD, LFINTOSC Mode,

Max.

Fosc = 31 kHz, PIC16LF1574/5/8/9 Only.

18

16

14

Max: 85°C + 3o Typical: 25°C

PIC16(L)F1574/5/8/9

(BOR), BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-26: Ipd, Brown-Out Reset (BOR), BORV = 1, PIC16F1574/5/8/9 Only.

Reset (LPBOR = 0), PIC16LF1574/5/8/9 Only.

FIGURE 28-28: Ipd, Low-Power Brown-Out Reset (LPBOR = 0), PIC16F1574/5/8/9 Only.

FIGURE 28-29: Ipd, ADC Non Converting, PIC16LF1574/5/8/9 Only.

FIGURE 28-30: Ipd, ADC Non Converting, PIC16F1574/5/8/9 Only.

FIGURE 28-43: HFINTOSC Accuracy Over Temperature, VDD = 1.8V, LF Devices Only.

FIGURE 28-44: HFINTOSC Accuracy Over Temperature, $2.3V \le VDD \le 5.5V$.

FIGURE 28-45: Brown-Out Reset Voltage, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-46: Brown-Out Reset Hysteresis, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-47: Brown-Out Reset Voltage, BORV = 1, PIC16F1574/5/8/9 Only.

FIGURE 28-48: Brown-Out Reset Hysteresis, BORV = 1, PIC16F1574/5/8/9 Only.

PIC16(L)F1574/5/8/9

BORV = 0.

FIGURE 28-50: Low-Power Brown-Out Reset Voltage, LPBOR = 0.

Max.

Typical

Temperature (°C)

Min.

Reset Hysteresis, LPBOR = 0.

FIGURE 28-53: POR Rearm Voltage, PIC16F1574/5/8/9 Only.

-40

-20 0 20 40 60 80

1.54 1.52

1.50

1.48 **S**^{1.46} 1.44 1.42

1.40

1.38

1.36

1.34

-60

5.0 5.5 6.0

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VI	EW	С	

l	MILLIMETERS				
Dimension Lim	its	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	I	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	I	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ -	×	<u>/xx</u>	<u>xxx</u>	Ex	amp	oles:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a)	Pl Ta In Si	IC16LF1578T - I/SO ape and Reel, dustrial temperature, OIC package
Device:	PIC16LF1574, PIC16LF1578,	PIC16F1574, PI PIC16F1578, PI	C16LF1575, PIC C16LF1579, PIC	C16F1575 C16F1579	b) c)	Pi In Pi Pi	IC16F1575 - I/P Idustrial temperature DIP package IC16LF1574-E/JQ
Tape and Reel Option:	Blank = Stand T = Tape	dard packaging (and Reel ⁽¹⁾	tube or tray)			E: U	xtended Temperature QFN Package
Temperature Range:	$I = -40^{\circ}$ E = -40^{\circ}	°C to +85°C °C to +125°C	(Industrial) (Extended)				
Package: ⁽²⁾	GZ = UQF JQ = UQF P = Plas SL = SOI SO = SOI SS = SSO ST = TSS	EN, 20-Lead (4x4 EN, 16-Lead (4x4 stic DIP C, 14-Lead C, 20-Lead DP, 20-Lead SOP, 14-Lead	4x0.5mm) 4x0.5mm)		No	te 1: 2:	 Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package
Pattern:	QTP, SQTP, Co (blank otherwis	ode or Special R e)	equirements				availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.