

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		BANK5		BANK6		BANK7	
	280h		300h		380h		
S		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)	
	28Bh		30Bh		38Bh		
	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA	
	28Dh	_	30Dh	—	38Dh	—	
	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC	
	28Fh		30Fh	—	38Fh	—	
	290h	_	310h	—	390h	—	
	291h		311h		391h	IOCAP	
	292h		312h		392h	IOCAN	
	293h		313h		393h	IOCAF	
	294h		314h		394h	_	
	295h		315h		395h	—	
	296h		316h		396h	_	
	297h	_	317h	—	397h	IOCCP	
	298h	_	318h	_	398h	IOCCN	
	299h	_	319h	_	399h	IOCCF	
	29Ah	_	31Ah	_	39Ah	_	
	29Bh	_	31Bh	_	39Bh	_	
	29Ch	_	31Ch	_	39Ch	_	
	29Dh	_	31Dh	_	39Dh	_	
_							

_

General Purpose Register 80 Bytes

Accesses 70h – 7Fh

TABLE 3-4: PIC16(L)F1575 MEMORY MAP, BANKS 0-7 BANK0 BANK1

BANK2

0006		0006		100h		1006		2006		2006		200h		2006	Г
00011	Core Registers (Table 3-2)	08011	Core Registers (Table 3-2)	10011	Core Registers (Table 3-2)	10011	Core Registers (Table 3-2)	20011	Core Registers (Table 3-2)	20011	Core Registers (Table 3-2)	30011	Core Registers (Table 3-2)	36011	
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	Ē
00Dh	_	08Dh		10Dh	_	18Dh	_	20Dh	_	28Dh	_	30Dh	_	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	
00Fh	_	08Fh		10Fh	—	18Fh	—	20Fh	_	28Fh	—	30Fh	—	38Fh	
010h	—	090h	—	110h	—	190h	—	210h	—	290h	—	310h	-	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	_	292h	—	312h	_	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h		293h	—	313h	_	393h	
014h		094h	_	114h	CM2CON1	194h	PMDATH	214h		294h	—	314h	_	394h	
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h		295h	—	315h	_	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h		296h	—	316h	_	396h	
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	_	317h	_	397h	
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	—	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	—	319h	—	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	_	31Ah	-	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh		29Bh	—	31Bh	_	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch		29Ch	—	31Ch	_	39Ch	
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	_	29Dh	—	31Dh		39Dh	
01Eh	_	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	—	31Eh	_	39Eh	
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh		39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	l
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	F
	Common RAM		Accesses 70h – 7Fh												
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	l

BANK3

BANK4

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1575.

DS40001782C-page 26

TABLE 3-13: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 31

		Bank 31	
F8	Ch		
		Unimplemented Read as '0'	
FE	3h		
FE	4h	STATUS_SHAD	
FE	5h	WREG_SHAD	
FE	6h	BSR_SHAD	
FE	7h	PCLATH_SHAD	
FE	8h	FSR0L_SHAD	
FE	9h	FSR0H_SHAD	
FE	Ah	FSR1L_SHAD	
FE	Bh	FSR1H_SHAD	
FE	Ch	_	
FE	Dh	STKPTR	
FE	Eh	TOSL	
FE	Fh	TOSH	
l egend:		I Inimplemented data n	nemory locations
Legenu.	read	as '0'.	ienory locations,

3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

4.2 Register Definitions: Configuration Words

R/P-1 U-1 U-1 R/P-1 R/P-1 U-1 BOREN<1:0>(1) CLKOUTEN bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1 R/P-1** U-1 R/P-1 CP(2) PWRTE⁽¹⁾ MCLRE WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as '1' bit 11 **CLKOUTEN:** Clock Out Enable bit 1 = OFF - CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin 0 = ON - CLKOUT function is enabled on CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ - Brown-out Reset enabled. The SBOREN bit is ignored. 11 = ON 10 = SLEEP - Brown-out Reset enabled while running and disabled in Sleep. The SBOREN bit is ignored. 01 = SBODEN- Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = OFF- Brown-out Reset disabled. The SBOREN bit is ignored. bit 8 Unimplemented: Read as '1' CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = OFF – Code protection off. Program Memory can be read and written. 0 = ON - Code protection on. Program Memory cannot be read or written externally. bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (ON): This bit is ignored. MCLR/VPP pin function is MCLR; Weak pull-up enabled. If LVP bit = 0 (OFF): $1 = ON - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = OFF – MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of pin's WPU control bit. **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = OFF-PWRT disabled 0 = ON - PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit bit 4-3 - WDT enabled. SWDTEN is ignored. 11 = ON 10 = SLEEP - WDT enabled while running and disabled in Sleep. SWDTEN is ignored. 01 = SWDTEN-WDT controlled by the SWDTEN bit in the WDTCON register 00 = OFF- WDT disabled. SWDTEN is ignored. bit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 = ECM01 = ECL- External Clock, Low-Power mode: CLKI on CLKI 00 = INTOSC-I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

REGISTER 4-1: CONFIGURATION WORD 1

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section
 5.3 "Clock Switching" for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

PIC16(L)F1574/5/8/9

FIGURE 5-3:	INTERNAL OSCILLATOR SWITCH TIMING
HPN/TOBC/ MPN/TOBC/	
HFINTOSC/	Craviliana Onlay ⁽⁹⁾ 2 cycle Syre. Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
SSINTOSC/	LENYXXXX (WET enabled)
HFINTOSC/ MENNOCOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
SINTORC	HFINYOSC/NFINYOSC URINTOSO hims off unless WOT is enabled
1989090	
HFRATOSO/ SAFINTOSO	
System Clock	
Note () See	Table 5-1, "Craditutor Switching Dalays" for more information.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
Lawawala							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	1 = Low-Power Sleep mode enabled in Sleep ⁽²⁾

- Draws lowest current in Sleep, slower wake-up
 - 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F1574/5/8/9 only.

2: See Section 27.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	143
IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	143
IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	143
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIE2	—	C2IE	C1IE	—	—	—	—	—	88
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	—	—	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
PIR2	—	C2IF	C1IF	—	—	—	—	—	91
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	—	—	92
STATUS	—	—	—	TO	PD	Z	DC	С	23
WDTCON	—	—		V	SWDTEN	99			

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to user IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3: FLASH PROGRAM

MEMORY UNLOCK SEQUENCE FLOWCHART

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 16 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 11 bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:4>) with the lower 4 bits of PMADRL, (PMADRL<3:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

Note:	The special unlock sequence is required
	Clock a write laten with data of initiate a
	Flash programming operation. If the
	unlock sequence is interrupted, writing to
	the latches or program memory will not be
	initiated.

- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

12.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible and are the only pins on the device with this compatibility.

12.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 12-1.

EXAMPLE 12-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	bcf INTCON,GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	movlw 0x55
	movwf PPSLOCK
	movlw 0xAA
	movwf PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	bsf PPSLOCK, PPSLOCKED
;	restore interrupts
	bsf INTCON,GIE

12.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

12.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

12.7 Effects of a Reset

A device Power-On-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 12-1.

17.0 **5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE**

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- · External VREF+ pin
- · VDD supply voltage
- FVR_buffer1

FIGURE 17-1:

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

Rev. 10-000026B 9/6/2013

VDD 00 VREF+ 01 VSOURCE+ FVR_buffer2 10

DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

					SYNC	C = 0, BRG	l = 1, BRC	G16 = 0				
BAUD	Fosc = 8.000 MHz			Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	_			_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—		—	57.60k	0.00	3	—	_	—
115.2k	—	—	—	—	—	_	115.2k	0.00	1	_	_	_

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 20.000 MHz			Fosc	Fosc = 18.432 MHz			= 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	-0.01	4166	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303
1200	1200	-0.03	1041	1200	0.00	959	1200.5	0.04	832	1200	0.00	575
2400	2399	-0.03	520	2400	0.00	479	2398	-0.08	416	2400	0.00	287
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.818	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11
115.2k	113.636	-1.36	10	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	—	_	—	_	—	115.2k	0.00	1	—	—	—

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	—	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read a	is '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR	Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7-4	Unimplement	ed: Read as '0'					
bit 3	OFIE: Offset I	nterrupt Enable	bit				
	1 = Interrupt (CPU on Offset N	latch				
	0 = Do not interview of the second	errupt CPU on C	Offset Match				
bit 2	PHIE: Phase	Interrupt Enable	bit				
	1 = Interrupt 0	PU on Phase I	Viatch Phase Match				
hit 1							
DILI	1 = Interrupt (CPU on Duty Cy	iable bit				
0 = Do not interrupt CPU on Duty Cycle Match							
bit 0	PRIE: Period	Interrupt Enable	e bit				
	1 = Interrupt C	CPU on Period I	Match				
0 = Do not interrupt CPU on Period Match							

REGISTER 23-2: PWMxINTE: PWM INTERRUPT ENABLE REGISTER

REGISTER 23-3: PWMxINTF: PWM INTERRUPT REQUEST REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	_	—	OFIF	PHIF	DCIF	PRIF
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardwa	re	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	OFIF: Offset Interrupt Flag bit ⁽¹⁾
	 1 = Offset Match Event occurred 0 = Offset Match Event did not occur
bit 2	PHIF: Phase Interrupt Flag bit ⁽¹⁾
	1 = Phase Match Event occurred0 = Phase Match Event did not occur
bit 1	DCIF: Duty Cycle Interrupt Flag bit ⁽¹⁾
	1 = Duty Cycle Match Event occurred
	0 = Duty Cycle Match Event did not occur
bit 0	PRIF: Period Interrupt Flag bit ⁽¹⁾
	1 = Period Match Event occurred
	0 = Period Match Event did not occur
Note 1	Bit is forced clear by bardware while module is disabled (EN = 0

Bit is forced clear by hardware while module is disabled (EN = 0).

Note: Th	Note: There are no long and short bit name variants for the following three mirror registers									
REGISTER	23-17: PW	MEN: PWM	EN BIT AC	CESS REGIST	ER					
U-0	U-0	U-0	U-	0 R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0			
	_	_		- PWM4EN	J_A PWM3EN	A PWM2EN_A	PWM1EN_A			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writa	ble bit	U = Unim	plemented bit, re	ad as '0'				
u = Bit is unchanged x = Bit i			= Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set	t	'0' = Bit is	cleared							
bit 7-4	Unimplem	ented: Read	as '0'							
bit 3-0	PWMyFN	PWM4/PWM	3/PWM2/P\\	/M1 Enable hits						
	Mirror copy	of FN bits in	PWMxCON-	<7>						
	winter copy									
REGISTER	23-18: PW	MLD: LD B		REGISTER						
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—		—	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A			
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **PWMxLDA:** PWM4/PWM3/PWM2/PWM1 LD bits Mirror copy of LD bits in PWMxLDCON<7>

REGISTER 23-19: PWMOUT: PWMOUT BIT ACCESS REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **PWMxOUT:** PWM4/PWM3/PWM2/PWM1 Output bits Mirror copy of OUT bits in PWMxCON<5>

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k - (W) \rightarrow (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.				
	C = 0 W > k				
	$C = 1$ $W \le k$				
	DC = 0 W<3:0> k<3:0>				

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W	/ from f				
Syntax:	[label] SL	JBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) \rightarrow (d	lestination)				
Status Affected:	C, DC, Z					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.					
	C = 0	W > f				
	C = 1	$W \leq f$				
	DC = 0	W<3:0> > f<3:0>				
	DC = 1	W<3:0> ≤ f<3:0>				

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

TABLE 27-5: MEMORY PROGRAMMING SPECIFICATIONS

	•	•	,				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	—	_	10	mA	
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	_	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN		VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

*

TABLE 27-8: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz		
OS10*	TWARM	HFINTOSC Wake-up from Sleep Start-up Time	_		5	15	μS		
		LFINTOSC Wake-up from Sleep Start-up Time	—		0.5		ms		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 27-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature.

FIGURE 27-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16		32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	-	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	-	+0.25%	%	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS			
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	Ν		14		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E		6.00 BSC		
Molded Package Width	E1		3.90 BSC		
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25 - 0.50			
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.10 - 0.25			
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		14		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	(L1)	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2