

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

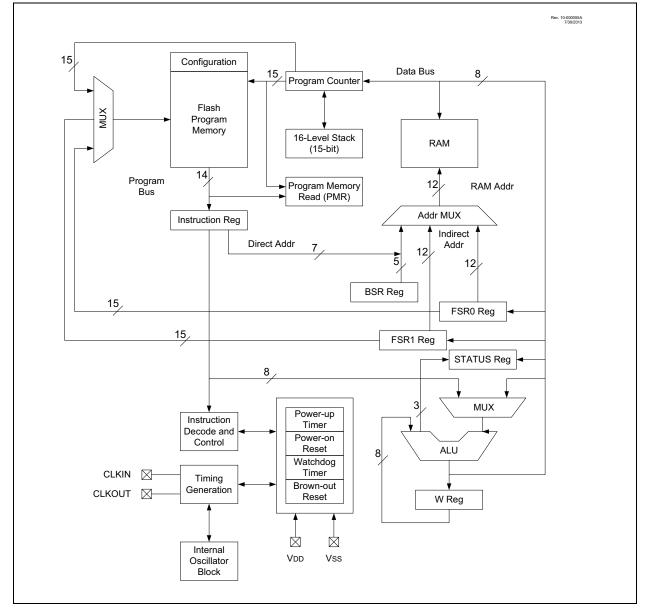
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579-i-gz

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

FIGURE 2-1: CORE BLOCK DIAGRAM

- Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

4.7 Register Definitions: Device ID

R R R R R R DEV<13:8> bit 13 bit 8 R R R R R R R R DEV<7:0> bit 7 bit 0

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

Legend:

-		
	R = Readable bit	

'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown

bit 13-0 **DEV<13:0>:** Device ID bits

Refer to Table 4-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.

Note 1: This location cannot be written.

REGISTER 4-4: REVISIONID: REVISION ID REGISTER⁽¹⁾

R	R	R	R	R	R
		REV<	13:8>		
bit 13					bit 8
-	D		D		

R	R	R	R	R	R	R	R	
REV<7:0>								
bit 7 bit 0								

Legend:			
R = Readable bit			
'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **REV<13:0>:** Revision ID bits These bits are used to identify the device revision.

Note 1: This location cannot be written.

TABLE 4-1: DEVICE ID VALUES

DEVICE	Device ID	Revision ID
PIC16F1574	3000h	2xxxh
PIC16F1575	3001h	2xxxh
PIC16F1578	3002h	2xxxh
PIC16F1579	3003h	2xxxh
PIC16LF1574	3004h	2xxxh
PIC16LF1575	3005h	2xxxh
PIC16LF1578	3006h	2xxxh
PIC16LF1579	3007h	2xxxh

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS	<1:0>	69
OSCSTAT	_	PLLR	PLLR OSTS HFIOFR HFIOFL				LFIOFR	HFIOFS	70
OSCTUNE	_	_			TUN<	<5:0>			71

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8				—	CLKOUTEN	BORE	N<1:0>	—	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	_	FOSC	C<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

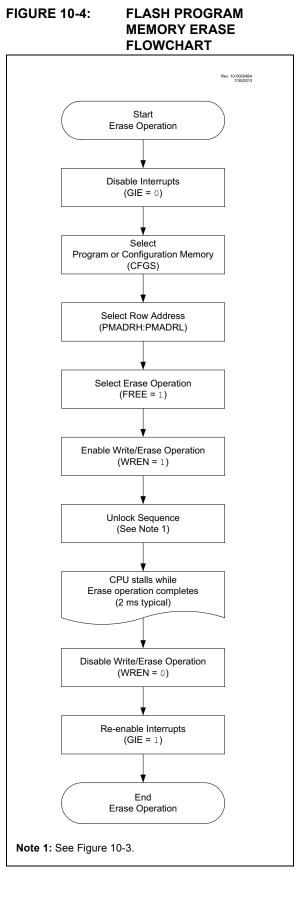
The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.


10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Resets	S
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_			PMDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit	itable bit U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ie at all other Rese	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				PMADR<14:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0	3	
u = Bit is unchange	ed	x = Bit is unknown		-n/n = Value at F	OR and BOR/Val	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
'1' = Bit is set		ʻ0' = Bit is clea	ared						

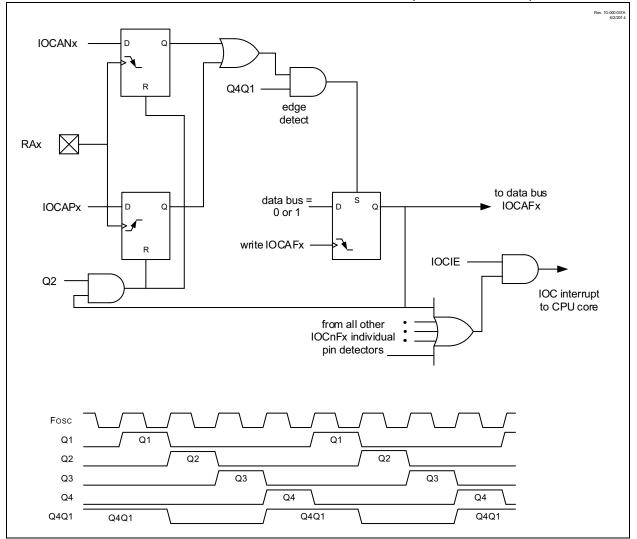
REGISTER 11-5: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up Register bits⁽³⁾ 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- **3:** For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.


REGISTER 11-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA5	ODA4	—	ODA2	ODA1	ODA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-4:	IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER ⁽¹⁾
----------------	--

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable bit	:	U = Unimplemented bit, read as '0'					
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets		
'1' = Bit is set		'0' = Bit is cleare	ed						

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
 - 0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0	Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	-	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>**: Interrupt-on-Change PORTB Negative Edge Enable bits

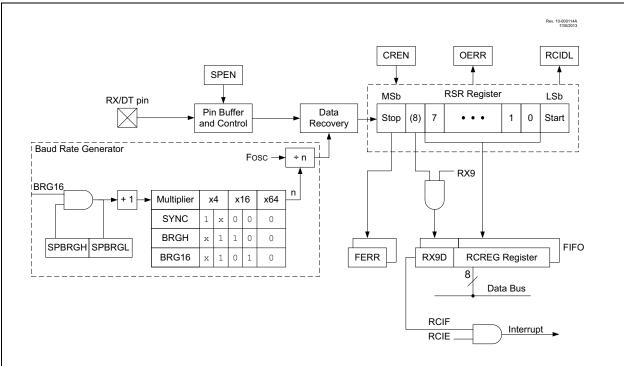
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—
bit 7	-						bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	1 = An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRC	F<3:0>	•	_	SCS	<1:0>	69	
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	_				89	
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	92	
PWMEN	-	—	—	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	243	
PWMLD	_	_	_	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	243	
PWMOUT	_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	243	
PWM1PHL				F	PH<7:0>	. –	. –		238	
PWM1PHH	PH<15:8>									
PWM1DCL				C)C<7:0>				239	
PWM1DCH				D	C<15:8>				239	
PWM1PRL				F	PR<7:0>				240	
PWM1PRH				Р	R<15:8>				240	
PWM10FL)F<7:0>				241	
PWM10FH					F<15:8>				241	
PWM1TMRL					MR<7:0>				242	
PWM1TMRH					/IR<15:8>				242	
PWM1CON	EN	_	OUT	POL	T	E<1:0>	_	_	233	
PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	233	
PWM1INTF					OFIE	PHIF	DCIF	PRIF	234	
PWM1CLKCON			PS<2:0>		-		-	:1:0>	235	
PWM1CLRCON PWM1LDCON	LDA	LDT	F 3 2.02				LDS	235		
PWM10FCON	LDA	OFM	<1:0>	OFO			OFS	230		
		OTIV	<1.02			—	013	<1.02	237	
PWM2PHL	PH<7:0> PH<15:8>									
PWM2PHH									238	
PWM2DCL)C<7:0>				239	
PWM2DCH					C<15:8>				239	
PWM2PRL					PR<7:0>				240	
PWM2PRH					R<15:8>				240	
PWM2OFL)F<7:0>				241	
PWM2OFH					F<15:8>				241	
PWM2TMRL					VIR<7:0>				242	
PWM2TMRH				-	1R<15:8>				242	
PWM2CON	EN	—	OUT	POL		E<1:0>	-	-	233	
PWM2INTE		_	—		OFIE	PHIE	DCIE	PRIE	234	
PWM2INTF				—	OFIF	PHIF	DCIF	PRIF	234	
PWM2CLKCON	—		PS<2:0>		_	—	-	<1:0>	235	
PWM2LDCON	LDA	LDT	—	-	_	_	-	<1:0>	236	
PWM2OFCON	—	OFM	<1:0>	OFO	-	—	OFS	<1:0>	237	
PWM3PHL					PH<7:0>				238	
PWM3PHH					H<15:8>				238	
PWM3DCL)C<7:0>				239	
PWM3DCH					C<15:8>				239	
PWM3PRL					PR<7:0>				240	
PWM3PRH					R<15:8>				240	
PWM3OFL)F<7:0>				241	
PWM3OFH					F<15:8>				241	
PWM3TMRL				T	VIR<7:0>				242	
PWM3TMRH			1	TN	1R<15:8>				242	
PWM3CON	EN	—	OUT	POL	MODE	=<1:0>	—	—	233	
PWM3INTE	_	—	—	—	OFIE	PHIE	DCIE	PRIE	234	
PWM3INTF	_	_	—		OFIF	PHIF	DCIF	PRIF	234	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	121
CWG1CON0	G1EN	_	_	G1POLB	G1POLA	_	_	G1CS0	253
CWG1CON1	G1ASD	LB<1:0>	G1ASD	G1ASDLA<1:0> G1IS<2:0>				254	
CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1	G1ASDSPPS	_	255
CWG1DBF	_	_		CWG1DBF<5:0>					
CWG1DBR	_	_		CWG1DBR<5:0>					
TRISA		—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	120

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG. **Note 1:** Unimplemented, read as '1'.

TABLE 27-2: SUPPLY CURRENT (IDD)^(1,2)

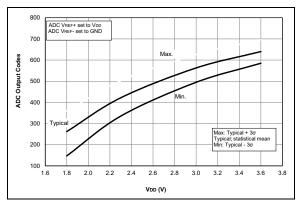
PIC16LF	1574/5/8/9	Standard Operating Conditions (unless otherwise stated)										
PIC16F1	574/5/8/9											
Param.	Device	Min.	Typt	Max.	Units	Conditions						
No.	Characteristics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		Vdd	Note					
D013		_	41	51	μA	1.8	Fosc = 1 MHz,					
		—	69	80	μA	3.0	External Clock (ECM), Medium Power mode					
D013		—	79	107	μA	2.3	Fosc = 1 MHz,					
			105	138	μA	3.0	External Clock (ECM),					
			151	184	μA	5.0	Medium Power mode					
D014			134	152	μA	1.8	Fosc = 4 MHz,					
		-	234	268	μA	3.0	External Clock (ECM), Medium Power mode					
D014			201	255	μA	2.3	Fosc = 4 MHz,					
		—	270	329	μA	3.0	External Clock (ECM), Medium Power mode					
		—	344	431	μA	5.0						
D015		—	7	19	μA	1.8	Fosc = 31 kHz,					
		—	9	20	μA	3.0	LFINTOSC, -40°C ≤ Ta ≤ +85°C					
D015			15	25	μA	2.3	Fosc = 31 kHz,					
		_	18	28	μA	3.0	└ LFINTOSC, 40°C ≤ TA ≤ +85°C					
		_	20	29	μA	5.0	$=-40$ C \leq 1A \leq +65 C					
D016		—	128	174	μA	1.8	Fosc = 500 kHz,					
		_	153	203	μA	3.0	MFINTOSC					
D016		—	166	241	μA	2.3	Fosc = 500 kHz,					
			187	273	μA	3.0	MFINTOSC					
		_	249	332	μA	5.0						
D017*		_	0.6	0.7	mA	1.8	Fosc = 8 MHz,					
		_	0.9	1.1	mA	3.0	HFINTOSC					
D017*		—	0.7	1.0	mA	2.3	Fosc = 8 MHz,					
		_	1.0	1.1	mA	3.0	HFINTOSC					
		_	1.1	1.2	mA	5.0						
D018		_	0.9	1.0	mA	1.8	Fosc = 16 MHz,					
		_	1.3	1.4	mA	3.0	HFINTOSC					
D018		_	1.1	1.3	mA	2.3	Fosc = 16 MHz,					
		_	1.3	1.5	mA	3.0	HFINTOSC					
		_	1.5	1.8	mA	5.0	-					

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

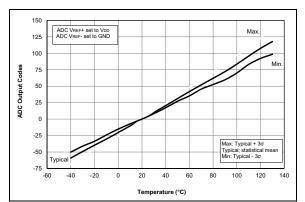
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3: PLL required for 32 MHz operation.

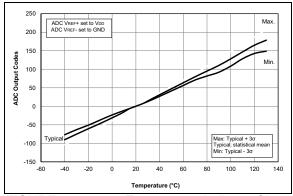
TABLE 27-5: MEMORY PROGRAMMING SPECIFICATIONS

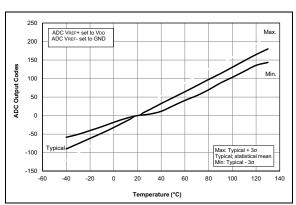

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0		9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	_	—	10	mA	
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	-	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	—	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

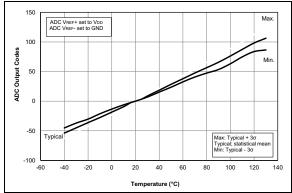
Standard Operating Conditions (unless otherwise stated)


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.


2: Required only if single-supply programming is disabled.


FIGURE 28-67: Temperature Indicator Initial Offset, Low Range, Temp = 20°C, LF Devices Only.


FIGURE 28-68: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 5.5V, F Devices Only.

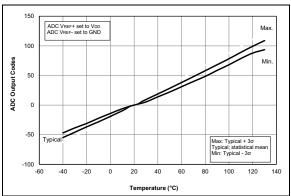

FIGURE 28-69: Temperature Indicator Slope Normalized TO 20°C, High Range, VDD = 3.6V, F Devices Only.

FIGURE 28-71: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 1.8V, LF Devices Only.

FIGURE 28-70: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 3.0V, F Devices Only.

FIGURE 28-72: Temperature Indicator Slope Normalized TO 20°C, Low Range, VDD = 3.0V, LF Devices Only.

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

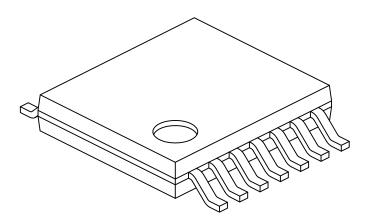
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

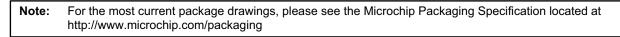
- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

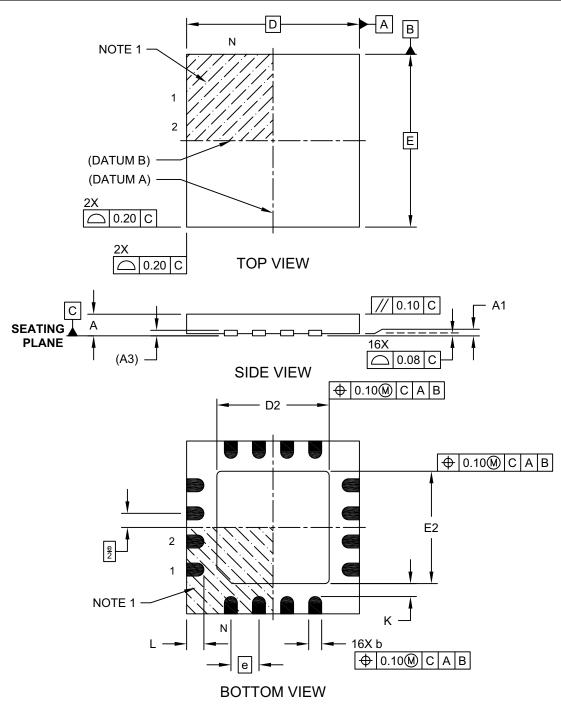
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS				
Dimension	MIN	NOM	MAX			
Number of Pins	Number of Pins N 14					
Pitch	е		0.65 BSC			
Overall Height	А	I	-	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E 6.40 BSC					
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	(L1)	1.00 REF				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.19	-	0.30		

Notes:

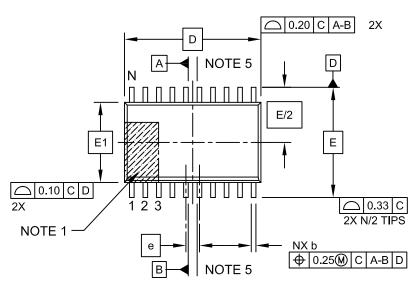

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

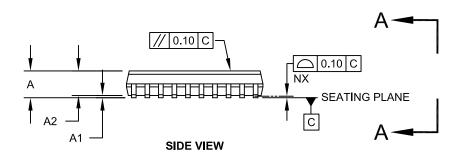

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

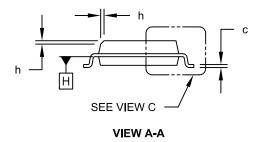
BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

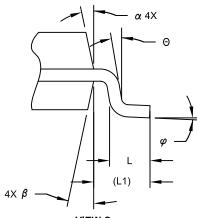
16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

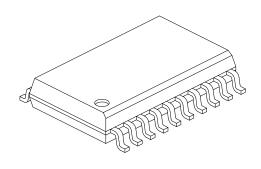



Microchip Technology Drawing C04-257A Sheet 1 of 2


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





Microchip Technology Drawing C04-094C Sheet 1 of 2

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VI	EW	С	

l	MILLIMETERS					
Dimension Lim	its	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2