E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

3.3.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

3.3.5 DEVICE MEMORY MAPS

The memory maps are as shown in Table 3-3 through Table 3-13.

FIGURE 3-3: BANKI

BANKED MEMORY PARTITIONING

IADEL 3	-13. SI L										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 27											
D8Ch	_	Unimpleme	nimplemented							—	_
D8Dh	—	Unimpleme	nted							_	_
D8Eh	PWMEN	_	_	_	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	0000	0000
D8Fh	PWMLD	_	_	_	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	0000	0000
D90h	PWMOUT	_	_	_	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM10UT_A	0000	0000
D91h	PWM1PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
D92h	PWM1PHH					PH<15:8>				XXXX XXXX	uuuu uuuu
D93h	PWM1DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
D94h	PWM1DCH					DC<15:8>				XXXX XXXX	uuuu uuuu
D95h	PWM1PRL					PR<7:0>				xxxx xxxx	սսսս սսսւ
D96h	PWM1PRH					PR<15:8>				xxxx xxxx	սսսս սսսւ
D97h	PWM10FL					OF<7:0>				xxxx xxxx	սսսս սսսւ
D98h	PWM10FH					OF<15:8>				xxxx xxxx	սսսս սսսւ
D99h	PWM1TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
D9Ah	PWM1TMRH					TMR<15:8>				xxxx xxxx	սսսս սսսւ
D9Bh	PWM1CON	EN	_	OUT	POL	MODE	E<1:0>	_	_	0-00 00	0-00 00
D9Ch	PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	000	000
D9Dh	PWM1INTF	_	_	_	—	OFIF	PHIF	DCIF	PRIF	000	000
D9Eh	PWM1CLKCON	_		PS<2:0>	•	—	_	CS<	<1:0>	-000 -000	-00000
D9Fh	PWM1LDCON	LDA	LDT	_	_	—	_	LDS	<1:0>	00000	0000
DA0h	PWM10FC0N	_	OFM	<1:0>	OFO	—	_	OFS	<1:0>	-000 -000	-00000
DA1h	PWM2PHL				•	PH<7:0>				xxxx xxxx	uuuu uuuu
DA2h	PWM2PHH					PH<15:8>				xxxx xxxx	uuuu uuuu
DA3h	PWM2DCL					DC<7:0>				xxxx xxxx	uuuu uuuu
DA4h	PWM2DCH					DC<15:8>				xxxx xxxx	սսսս սսսս
DA5h	PWM2PRL		PR<7:0>							xxxx xxxx	uuuu uuuu
DA6h	PWM2PRH					PR<15:8>				xxxx xxxx	սսսս սսսս
DA7h	PWM2OFL					OF<7:0>				xxxx xxxx	uuuu uuuu
DA8h	PWM2OFH					OF<15:8>				xxxx xxxx	uuuu uuuu
DA9h	PWM2TMRL					TMR<7:0>				xxxx xxxx	uuuu uuuu
DAAh	PWM2TMRH					TMR<15:8>				xxxx xxxx	111111 11111

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

4.2 Register Definitions: Configuration Words

R/P-1 U-1 U-1 R/P-1 R/P-1 U-1 BOREN<1:0>(1) CLKOUTEN bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1 R/P-1 R/P-1** U-1 R/P-1 CP(2) PWRTE⁽¹⁾ MCLRE WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as '1' bit 11 **CLKOUTEN:** Clock Out Enable bit 1 = OFF - CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin 0 = ON - CLKOUT function is enabled on CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ - Brown-out Reset enabled. The SBOREN bit is ignored. 11 = ON 10 = SLEEP - Brown-out Reset enabled while running and disabled in Sleep. The SBOREN bit is ignored. 01 = SBODEN- Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = OFF- Brown-out Reset disabled. The SBOREN bit is ignored. bit 8 Unimplemented: Read as '1' CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = OFF – Code protection off. Program Memory can be read and written. 0 = ON - Code protection on. Program Memory cannot be read or written externally. bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (ON): This bit is ignored. MCLR/VPP pin function is MCLR; Weak pull-up enabled. If LVP bit = 0 (OFF): $1 = ON - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = OFF – MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of pin's WPU control bit. **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = OFF-PWRT disabled 0 = ON - PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit bit 4-3 - WDT enabled. SWDTEN is ignored. 11 = ON 10 = SLEEP - WDT enabled while running and disabled in Sleep. SWDTEN is ignored. 01 = SWDTEN-WDT controlled by the SWDTEN bit in the WDTCON register 00 = OFF- WDT disabled. SWDTEN is ignored. bit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 = ECM01 = ECL- External Clock, Low-Power mode: CLKI on CLKI 00 = INTOSC-I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

REGISTER 4-1: CONFIGURATION WORD 1

6.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- · BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0		Awake	Active	Waits for BOR ready (BORRDY = 1)
10	X	Sleep	Disabled	
0.1	1	х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
01	0	х	Disabled	Begins immediately (BORRDY = x)
0.0	Х	х	Disabled	

TABLE 6-1:BOR OPERATING MODES

Note 1: In these specific cases, "release of POR" and "wake-up from Sleep," there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

11.2 Register Definitions: PORTA

REGISTER 11-1: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0 RA<5:0>: PORTA I/O Value bits⁽¹⁾

1 = Port pin is <u>></u> Vін

0 = Port pin is <u><</u> Vı∟

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '1'
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

Note 1: Unimplemented, read as '1'.

Register Definitions: ADC Control 16.3

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value					OR/Value at all o	other Resets	
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>:	Analog Channel	Select bits				
	00000 = AN	10					
	00001 = AN	11					
	00010 = AN	12					
	00011 = AN	13					
	00100 = AN	14					
	00101 = AN	15					
	00110 = AN	10 17					
	00111 - AN	17 18(4)					
	01001 = AN	19(4)					
	01010 = AN	110 ⁽⁴⁾					
	01011 = AN	111 ⁽⁴⁾					
	01100 = Re	served. No cha	nnel connecte	d.			
	•						
	•						
	• 11100 = Re	served No cha	nnel connecte	d			
	11100 = Ter	nperature Indica	ator ⁽¹⁾	u.			
	11110 = DA	C (Digital-to-An	alog Converte	r) ⁽²⁾			
	11111 = FVI	R (Fixed Voltage	e Reference) E	Buffer 1 Output ⁽	3)		
bit 1	GO/DONE:	ADC Conversio	n Status bit				
	1 = ADC cor	nversion cycle ir	n progress. Se	tting this bit sta	rts an ADC co	nversion cycle.	
	This bit is	s automatically	cleared by har	dware when the	e ADC conver	sion has comple	eted.
	0 = ADC cor	nversion comple	ted/not in prog	gress			
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e	enabled					
	0 = ADC is c	disabled and cor	nsumes no ope	erating current			
Note 1:	See Section 15.0	0 "Temperature	Indicator Mo	dule" for more	information.		
2:	See Section 17.0	0 "5-Bit Digital-	to-Analog Co	onverter (DAC)	Module" for I	more informatior	า.
3:	See Section 14.0	0 "Fixed Voltag	e Reference ((FVR)" for more	e information.		
٨.	Available on PIC	16/L)E1578/Q da	avices only				

4: Available on PIC16(L)F1578/9 devices only.

18.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	—	CxPOL	_	CxSP	CxHYS	CxSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CxON: Comp 1 = Comparat 0 = Comparat	arator Enable tor is enabled tor is disabled	bit and consumes	no active pov	wer		
bit 6	it 6 CxOUT: Comparator Output bit <u>If CxPOL = 1 (inverted polarity):</u> 1 = CxVP < CxVN 0 = CxVP > CxVN <u>If CxPOL = 0 (non-inverted polarity):</u> 1 = CxVP > CxVN 0 = CxVP > CxVN						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	CxPOL: Com	parator Output	Polarity Select	t bit			
	1 = Comparat	tor output is inv	verted				
	0 = Comparat	tor output is no	t inverted				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	1 = Comparat 0 = Comparat	arator Speed/F tor mode in noi tor mode in low	ower Select bit rmal power, hig v-power, low-sp	her speed eed			
bit 1	CxHYS: Com	parator Hyster	esis Enable bit				
	1 = Compara 0 = Compara	tor hysteresis tor hysteresis	enabled disabled				
bit 0	CxSYNC: Co	mparator Outp	ut Synchronous	s Mode bit			
	1 = Compara Output up 0 = Compara	itor output to T pdated on the f itor output to T	Fimer1 and I/O falling edge of 1 imer1 and I/O p	pin is synch limer1 clock in is asynchr	ronous to chang source. ronous	ges on Timer1	clock source.

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

22.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 22-5:

ASYNCHRONOUS RECEPTION

22.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

22.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 22.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 22.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 22-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	—	TMR2IF	TMR1IF	90
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
TXREG		EUSART Transmit Data Register							
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

PIC16(L)F1574/5/8/9

24.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 24-1 for more detail.

EQUATION 24-1: DEAD-BAND UNCERTAINTY

$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$

Example:
$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 62.5 ns$$

24.9 Auto-Shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

24.9.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

24.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 24-6.

24.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are:

- Comparator C1 C1OUT_sync
- Comparator C2 C2OUT_sync
- CWG1FLT

Shutdown inputs are selected in the CWGxCON2 register. (Register 24-3).

```
Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.
```

24.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

24.11 Configuring the CWG

The following steps illustrate how to properly configure the CWG to ensure a synchronous start:

- 1. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs.
- 2. Clear the GxEN bit, if not already cleared.
- 3. Set desired dead-band times with the CWGxDBR and CWGxDBF registers.
- 4. Setup the following controls in CWGxCON2 auto-shutdown register:
 - · Select desired shutdown source.
 - Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASE bit and clear the GxARSEN bit.
- 5. Select the desired input source using the CWGxCON1 register.
- 6. Configure the following controls in CWGxCON0 register:
 - · Select desired clock source.
 - Select the desired output polarities.
- 7. Set the GxEN bit.
- Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs.
- If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.

24.11.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 24-3). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level.

24.11.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to have resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 24-5 and Figure 24-6.

24.11.2.1 Software Controlled Restart

When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shut-down event by software.

Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

24.11.2.2 Auto-Restart

When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically.

The GxASE bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

© 2016 Microchip Technology Inc

PIC16(L)F1574/5/8/9

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
GxASE	GxARSEN	_	_	GxASDSC2	GxASDSC1	GxASDSPPS	—
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	e bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on condit	ion	
bit 7	GxASE: Auto	-Shutdown Ev	ent Status bi	t			
	1 = An auto-s	shutdown eve	nt has occurre	ed			
	0 = No auto-s	shutdown eve	nt has occurr	ed			
bit 6	GxARSEN: A	uto-Restart E	nable bit				
	1 = Auto-rest	tart is enabled					
	0 = Auto-rest	tart is disabled	1				
bit 5-4	Unimplemen	ted: Read as	'0'				
bit 3	GxASDSC2:	CWG Auto-sh	utdown on C	omparator C2 I	Enable bit		
	1 = Shutdow	n when Comp	arator C2 out	put (C2OUT_s	ync) is high		
	0 = Compara	ator C2 output	has no effect	on shutdown			
bit 2	GxASDSC1:	CWG Auto-sh	utdown on C	omparator C1 I	Enable bit		
	1 = Shutdow	n when Comp	arator C1 out	put (C1OUT_s	ync) is high		
	0 = Compara	ator C1 output	has no effect	on shutdown			
bit 1	GxASDSPPS	: CWG Input	Pin Enable bi	t			
	1 = Shutdow	n when CWG	input pin (CV	/GxIN) is high			
	0 = CWG inp	out pin (CWGx	IN) signal has	s no effect on s	hutdown		
bit 0	Unimplemen	ted: Read as	'0'				

REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2

TABLE 27-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

PIC16LF1574/5/8/9		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode						
PIC16F1574/5/8/9		Low-Power Sleep Mode, VREGPM = 1						
Param. No.	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units	Conditions	
							Vdd	Note
D027		—	5	22	25	μA	1.8	Comparator, CxSP = 0
		—	5	23	27	μA	3.0	
D027		—	15	23	25	μA	2.3	Comparator, CxSP = 0
		—	17	27	29	μA	3.0	
		—	19	28	30	μA	5.0	
D028A		_	23	41	42	μA	1.8	Comparator, Normal Power, CxSP = 1 (Note 1)
		—	25	42	44	μA	3.0	
D028A		—	33	55	56	μA	2.3	Comparator, Normal Power, CxSP = 1
		_	34	59	60	μA	3.0	
		_	36	60	61	μA	5.0	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

*

FIGURE 28-19: Ipd Base, Low-Power Sleep Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-20: Ipd Base, Low-Power Sleep Mode (VREGPM = 1), PIC16F1574/5/8/9 Only.

FIGURE 28-21: Ipd, Watchdog Timer (WDT), PIC16LF1574/5/8/9 Only.

Max

Reference (FVR), PIC16LF1574/5/8/9 Only.

Typical

VDD (V)

35

30

25

15

10

5

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

FIGURE 28-23:

<u>ک</u> 20

8

Max: 85°C + 3σ Typical: 25°C

FIGURE 28-22: Ipd, Watchdog Timer (WDT), PIC16F1574/5/8/9 Only.

FIGURE 28-24: Ipd, Fixed Voltage Reference (FVR), PIC16F1574/5/8/9 Only.

5.0

5.5

6.0

PIC16(L)F1574/5/8/9

BORV = 0.

FIGURE 28-50: Low-Power Brown-Out Reset Voltage, LPBOR = 0.

Max.

Typical

Temperature (°C)

Min.

Reset Hysteresis, LPBOR = 0.

FIGURE 28-53: POR Rearm Voltage, PIC16F1574/5/8/9 Only.

-40

-20 0 20 40 60 80

1.54 1.52

1.50

1.48 **S**^{1.46} 1.44 1.42

1.40

1.38

1.36

1.34

-60

5.0 5.5 6.0

PIC16(L)F1574/5/8/9

FIGURE 28-57: Comparator Hysteresis, Normal Power Mode (CxSP = 1, CxHYS = 1).

FIGURE 28-58: Comparator Hysteresis, Low-Power Mode (CxSP = 0, CxHYS = 1).

FIGURE 28-59: Comparator Response Time, Normal Power Mode, (CxSP = 1).

FIGURE 28-60: Comparator Response Time Over Temperature, Normal Power Mode, (CxSP = 1).