

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1574 MEMORY MAP, BANKS 0-7

	BANK0		BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h		080h		100h		180h		200h		280h		300h		380h	
	(Table 3-2)		(Table 3-2)		(Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh	(08Bh	(10Bh	(18Bh	(10000 0 _)	20Bh	(28Bh	(10000 0 _)	30Bh	(12210 0 2)	38Bh	(10000 0 _)
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	_	08Dh	_	10Dh	_	18Dh	_	20Dh	_	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	—	10Fh	—	18Fh	_	20Fh	_	28Fh	—	30Fh	_	38Fh	_
010h	_	090h	_	110h	_	190h	_	210h	_	290h	—	310h	_	390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	_	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	—	293h	_	313h	_	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	—	294h	_	314h	_	394h	—
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	—	295h	—	315h	—	395h	_
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h	_	396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	—	297h	—	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	—	298h	_	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	_	319h	_	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	—	39Ch	_
01Dh	_	09Dh	ADCON0	11Dh	_	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	_
01Eh	—	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	_	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General	3A0h	
													Purpose		
	General		General		General		General		General		General	20 5 6	16 Bytes		
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose	32F11	TO Dytes		Unimplemented
	Register		Register		Register		Register		Register		Register	330n	Unimplemented		Read as '0'
	ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		ou bytes		Read as '0'		
												005		0551	
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		u⊢un	A0000005	170n	A0000005	TEUN	A	270h	A0000000	∠⊢uh	A 0000000	370h	A0000000	3⊢0n	A
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Eb		OFEN	/ // //	17Eb	/ // // //	1EEb	7.511 7111	27Eb		2EEb		37Eb	/ // //	3EEb	/ // //
0/FII		UFFI		1750		1640		21511		2621		37 FI		SEEU	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1574.

PIC16(L)F1574/5/8/9

TABLE 3-10: PIC16(L)F1574/5/8/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers	C80h	Core Registers	D00h	Core Registers	D80h	Core Registers	E00h	Core Registers	E80h	Core Registers	F00h	Core Registers	F80h	Core Registers
C0Bh	(Table 3-2)	C8Bh	(Table 3-2)	D0Bh	(Table 3-2)	D8Bh	(Table 3-2)	E0Bh	(Table 3-2)	E8Bh	(Table 3-2)	F0Bh	(Table 3-2)	F8Bh	(Table 3-2)
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch		E0Ch		E8Ch		F0Ch	—	F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—							F0Dh	_		
C0Eh	—	C8Eh	—	D0Eh	_							F0Eh			
C0Fh	_	C8Fh	_	D0Fh	—							F0Fh	—		
C10h	_	C90h	_	D10h	—							F10h	—		
C11h	—	C91h	—	D11h	—							F11h	—		
C12h	—	C92h	—	D12h	—							F12h	—		
C13h	—	C93h	—	D13h	—							F13h	—		
C14h	—	C94h	—	D14h	—							F14h	—		
C15h	—	C95h	—	D15h	—							F15h			
C16h	—	C96h	—	D16h	—							F16h	_		
C17h		C97h	_	D17h	_							F17h			
C18h	—	C98h	—	D18h	—		See Table 3-11		See Table 3-12		See Table 3-12	F18h			See Table 3-13
C19h	_	C99h	_	D19h	_							F19h			
C1Ah	—	C9Ah	—	D1Ah	—							F1Ah	_		
C1Bh	—	C9Bh	—	D1Bh	—							F1Bh	_		
C1Ch	—	C9Ch	—	D1Ch	—							F1Ch	—		
C1Dh	_	C9Dh		D1Dh								F1Dh			
		C9En	_		_							FIEN			
C20h	_	C9Fn	_	D1Fn D20h	_							F1FN F20h			
02011		0/1011		DZOII								1 2011			
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'								Unimplemented Read as '0'		
C6Fh		CEEh		D6Fh		DEEh		F6F h		FFFh		F6Fh		FFFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-11: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 27

		Bank 27	
	D8Ch		
	D8Dh	—	
	D8Eh	PWMEN	
	D8Fh	PWMLD	
	D90h	PWMOUT	
	D91h	PWM1PHL	
	D92h	PWM1PHH	
	D93h	PWM1DCL	
	D94h	PWM1DCH	
	D95h	PWM1PRL	
	D96h	PWM1PRH	
	D97h	PWM10FL	
	D98h	PWM10FH	
	D99h	PWM1TMRI	
	DOON	PWM1TMRH	
	DORH	PWM1CON	
	DaCh	PWM1INTE	
	DOOP		
	DaDu		
	D9Eh		
	D9Fn	PWWILDCON	
	DAUN	PWWIDFCON	
	DA1h	PWW2PHL	
	DA2h	PWW2PHH	
	DA3h	PWM2DCL	
	DA4h	PWM2DCH	
	DA5h	PWM2PRL	
	DA6h	PWM2PRH	
	DA7h	PWM2OFL	
	DA8h	PWM2OFH	
	DA9h	PWM2TMRL	
	DAAh	PWM2TMRH	
	DABh	PWM2CON	
	DACh	PWM2INTE	
	DADh	PWM2INTF	
	DAEh	PWM2CLKCON	
	DAFh	PWM2LDCON	
	DB0h	PWM2OFCON	
	DB1h	PWM3PHL	
	DB2h	PWM3PHH	
	DB3h	PWM3DCL	
	DB4h	PWM3DCH	
	DB5h	PWM3PRL	
	DB6h	PWM3PRH	
	DB7h	PWM30FL	
	DB8h	PWM30FH	
	DB9h	PWM3TMRL	
	DBAh	PWM3TMRH	
	DBBh	PWM3CON	
	DBCh	PWM3INTE	
	DBDh	PWM3INTF	
	DBEh	PWM3CLKCON	
	DBFh	PWM3LDCON	
	DC0h	PWM30FC0N	
	DC1h	PWM4PHI	
	DC2h	PWM4PHH	
	DC2h		
	DC4II DC5h		
	DCSI		
	DC/n		
	DC9h		
	DCAh		
	DCBh	PWW4CON	
	DCCh	PWW4IN1E	
	DCDh	PWM4INTF	
	DCEh	PWM4CLKCON	
	DCFh	PWM4LDCON	
	DD0h	PWM40FC0N	
	DD1h		
	DEFh	—	
Logendy	= L Inimr	lemented data momony l	ocations read as 'o'
Legenu.	- 011114	semented data memory i	Jourions, 10au as 0.

TABLE 3-12: PIC16(L)F1574/5/8/9 MEMORY MAP, BANK 28-29 MAP

	Bank 28		Bank 29
E0Ch	—	E8Ch	_
E0Dh	_	E8Dh	_
E0Eh	_	E8Eh	_
E0Fh	PPSLOCK	E8Fh	_
E10h	INTPPS	E90h	RA0PPS
F11h	TOCKIPPS	F91h	RA1PPS
E12h	TICKIPPS	E92h	RA2PPS
E13h	TIGPPS	F03h	
E14h	CWG1PPS	E0/h	PA/PPS
E15h	DVDDS	E05h	DA5DDS
E16h	CKPPS	Egen	-
		EOTh	
E19b	ADCACIFF3	Eagh	—
E10h		EOOh	
		EQAN	
		EORh	—
		Eapli	
E1Ch	_	E9Ch	RB4PPS(')
E1Dh		E9Dh	RB5PPS ⁽¹⁾
E1Eh	_	E9Eh	RB6PPS ⁽¹⁾
F1Fh	_	FOFh	RB7PPS(1)
E20h	_	FAOh	RCOPPS
E21h		EA1h	RC1PPS
E22h		EA2h	RC2PPS
E22h		EA2h	PC3PPS
E24h		EA4h	PC/PPS
E25h		EASh	
E2011		EASI	
E26N	_	EAGU	RC6PPS(")
E27h		EA7h	RC7PPS(")
E28h	_	EA8h	—
E29h	_	EA9h	—
E2Ah	_	EAAh	—
E2Bh	—	EABh	—
E2Ch	_	EACh	—
E2Dh	_	EADh	—
E2Eh	—	EAEh	—
E2Fh	_	EAFh	—
E30h	_	EB0h	—
E31h	—	EB1h	—
E32h		EB2h	—
E33h	_	EB3h	_
E34h	_	EB4h	_
E35h		EB5h	_
E36h		EB6h	_
E37h		EB7h	_
E38h		EB8h	_
E39h		EB9h	
E3Ah		EBAh	
E3Bh	—	EBBh	_
E3Ch	_	EBCh	_
E3Dh	_	EBDh	_
E3Eh	_	EBEh	_
E3Fh		EBFh	
E40h		EC0h	
	_		—
E6Fh		EEFh	
l egend:	= Unimpleme	nted data	memory locations

TABLE 3-15: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
10Ch	LATA	_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB ⁽¹⁾	LATB7	LATB6	LATB5	LATB4	—	—	—	—	xxxx	xxxx
10Eh	LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	XXXX XXXX
10Fh	—	Unimpleme	nted					•	_	_	
110h	—	Unimpleme	nted							_	_
111h	CM1CON0	C10N	C10UT	_	C1POL	—	C1SP	C1HYS	C1SYNC	00-0 -100	00-0 -100
112h	CM1CON1	C1INTP	C1INTN	C1PC	CH<1:0>	—		C1NCH<2:0>		0000 -000	0000 -000
113h	CM2CON0	C2ON	C2OUT	_	C2POL	—	C2SP	C2HYS	C2SYNC	00-0 -100	00-0 -100
114h	CM2CON1	C2INTP	C2INTN	C2PC	CH<1:0>	—		C2NCH<2:0>		0000 -000	0000 -000
115h	CMOUT	_	_	_	_	—	—	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	BORFS	_	_	—	—	—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF	/R<1:0>	ADFV	R<1:0>	0000 00p0	0q00 0000
118h	DACCON0	DACEN	_	DACOE	_	DACPS	SS<1:0>	—	—	0-0- 00	0-0- 00
119h	DACCON1	_	_	_		DACR<4:0>					0 0000
11Ah to 11Fh	_	Unimplemented							_	_	

PIC16(L)F1574/5/8/9

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

3: Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOREN	BORV ⁽³⁾	STVREN	PLLEN
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1
—	—	_	—	_	PPS1WAY	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	P = Program	mable bit	U = Unimplem	nented bit, read	l as '1'	
'0' = Bit is	cleared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13	LVP: Low-Vo	oltage Programi	ming Enable bit	₍ (1)			
	1 = ON -	- Low-voltage	programming	enabled. MC	LR/VPP pin f	unction is MC	CLR. MCLRE
		Configuration	bit is ignored.				
	0 = OFF -	- High Voltage	on MCLR/VPP	must be used fo	or programming	J	
bit 12	DEBUG: De	bugger Mode bi	(²⁾				
	1 = OFF -	- In-Circuit Debu	igger disabled;	ICSPCLK and	ICSPDAT are (general purpose	e I/O pins.
L:1 4 4			ugger enabled,		ICSPDAT ale C		; debugger.
DICTI	1 - OFF	LOW-POWER Bro	wn-out Reset E	is disabled			
	0 = ON -	- Low-power Bro	own-out Reset	is enabled			
bit 10	BORV: Brow	n-out Reset Vo	Itage Selection	bit ⁽³⁾			
	1 = LOW -	- Brown-out Res	set voltage (VB	OR), low trip poi	nt selected		
	0 = HIGH -	- Brown-out Res	set voltage (VB	OR), high trip po	oint selected		
bit 9	STVREN: St	tack Overflow/U	nderflow Reset	t Enable bit			
	1 = ON -	 Stack Overflow 	v or Underflow	will cause a Re	set		
	0 = OFF -	 Stack Overflow 	v or Underflow	will not cause a	Reset		
bit 8	PLLEN: PLL	Enable bit					
	1 = ON -	- 4xPLL enabled	3				
h# 7 0	0 = OFF -		u 1,				
	Unimpleme						
bit 2	PPS1WAY: H		ne-Way Set Er	hable bit			4 l
	$\perp = ON$	PPSLOCK	off can only be	set once atter a	in uniocking sec	Juence is execu-	tea; once
	0 = OFF	The PPSLOCK	bit can be set a	and cleared as r	needed (provide	d an unlocking s	sequence is
	-	executed)					
Note 4:	This hit serves to		to (0) where ===		o io optored de		
NOTE 1:		in Configuration	U U when pro	gramming mod		i LVP.	
2:	THE DEBUG bit	in Configuration	i vvoras is man	ageo automatic	any by device of	Jevelopment to	ois incluaing

REGISTER 4-2: CONFIGURATION WORD 2

- debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
- **3:** See VBOR parameter for specific trip point voltages.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external logic level clocks. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

• Selectable system clock source between external or internal sources via software.

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low, medium, and high-frequency clock sources, designated LFINTOSC, MFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xx	xPPS: PERIPHERAL xxx	INPUT SELECTION
-------------------	-----------------------------	-----------------

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
	_	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periphe	eral	
bit 7-5	Unimplement	ted: Read as 'd)'				
bit 4-3 xxxPPS<4:3>: Peripheral xxx Input PORT Selection bits 11 = Reserved. Do not use. 10 = Peripheral input is PORTC 01 = Peripheral input is PORTB ⁽²⁾ 00 = Peripheral input is PORTA							
bit 2-0 xxxPPS<2:0>: Peripheral xxx Input Bit Selection bits ⁽¹⁾ 111 = Peripheral input is from PORTx Bit 7 (Rx7) 110 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5) 100 = Peripheral input is from PORTx Bit 4 (Rx4) 011 = Peripheral input is from PORTx Bit 3 (Rx3) 010 = Peripheral input is from PORTx Bit 2 (Rx2) 001 = Peripheral input is from PORTx Bit 1 (Rx1) 000 = Peripheral input is from PORTx Bit 0 (Rx0)							

Note 1: See Table 12-1 for xxxPPS register list and Reset values.2: PIC16(L)F1578/9 only.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u			
—	—	—		RxyPPS<4:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable b			bit	U = Unimplen	nented bit, read	as '0'				
u = Bit is unchanged x = Bit is unkno			iown	-n/n = Value at POR and BOR/Value at all other Resets						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 12-2 for the selection codes

'0' = Bit is cleared

1' = Bit is set

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
—	—	—	_	—		ADRE	S<9:8>			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	able bit U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 16-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

bit 7-2 **Reserved**: Do not use.

bit 1-0	ADRES<9:8>: ADC Result Register bits
	Upper two bits of 10-bit conversion result

REGISTER 16-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADRES<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits Lower eight bits of 10-bit conversion result

FIGURE 20-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled of rising edge of T10	Cleared by hardware on falling edge of T1GVAL
t1g_in		
Т1СКІ		
T1GVAL		
Timer1	Ν	N + 1 N + 2 N + 3 N + 4
TMR1GIF	- Cleared by software	Set by hardware on Cleared by falling edge of T1GVAL
L		

21.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see Section 21.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

21.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

21.3 Timer2 Output

The output of TMR2 is T2_match.

The T2_match signal is synchronous with the system clock. Figure 21-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

FIGURE 21-3: T2_MATCH TIMING DIAGRAM

21.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

22.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 22-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

22.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 22-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

22.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

22.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

22.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 22.5.1.2 "Clock Polarity**".

22.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

22.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 22.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 22.5.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 22-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	204
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	-	_	TMR2IF	TMR1IF	90
RCREG	EUSART Receive Data Register								
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

FIGURE 23-13:

PIC16(L)F1574/5/8/9

REGISTER 23-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
	PR<15:8>								
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'			
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 **PR<15:8>**: PWM Period High bits Upper eight bits of PWM period count

REGISTER 23-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u								
PR<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PR<7:0>**: PWM Period Low bits Lower eight bits of PWM period count

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRC	F<3:0>		—	SCS	<1:0>	69
PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	—	—	_	89
PIR3	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	—	—	—	92
PWMEN	_	_	—	_	PWM4EN_A	PWM3EN_A	PWM2EN_A	PWM1EN_A	243
PWMLD	_	_	—	_	PWM4LDA_A	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	243
PWMOUT	_	_	—	_	PWM4OUT_A	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	243
PWM1PHL			•	P	H<7:0>	•	•	•	238
PWM1PHH				PI	H<15:8>				238
PWM1DCL				D	C<7:0>				239
PWM1DCH				D	C<15:8>				239
PWM1PRL				P	R<7:0>				240
PWM1PRH				PI	R<15:8>				240
PWM10FL				C)F<7:0>				241
PWM10FH				0	F<15:8>				241
PWM1TMRL				TN	/IR<7:0>				242
PWM1TMRH				TM	IR<15:8>				242
PWM1CON	EN	_	OUT	POL	MODE	=<1:0>	—	—	233
PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	234
PWM1INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	234
PWM1CLKCON	_		PS<2:0>		_	_	CS<	:1:0>	235
PWM1LDCON	LDA	LDT	_	_	_	_	LDS	236	
PWM10FCON	_	OFM	<1:0>	OFO	_	_	OFS	237	
PWM2PHL		PH<7:0>							238
PWM2PHH				PI	H<15:8>				238
PWM2DCL				D	C<7:0>				239
PWM2DCH				D	C<15:8>				239
PWM2PRL				P	R<7:0>				240
PWM2PRH				PI	R<15:8>				240
PWM2OFL				C)F<7:0>				241
PWM2OFH				0	F<15:8>				241
PWM2TMRL				TN	/IR<7:0>				242
PWM2TMRH				TN	IR<15:8>				242
PWM2CON	EN	_	OUT	POL	MODE	=<1:0>		_	233
PWM2INTE	_	_	_		OFIE	PHIE	DCIE	PRIE	234
PWM2INTF	_		_	_	OFIF	PHIF	DCIF	PRIF	234
PWM2CLKCON	_		PS<2:0>		_		CS<	:1:0>	235
PWM2LDCON	LDA	LDT	_	_			LDS	<1:0>	236
PWM2OFCON	_	OFM	<1:0>	OFO			OFS	<1:0>	237
PWM3PHL				P	H<7:0>				238
PWM3PHH				P	H<15:8>				238
PWM3DCL				D	C<7:0>				239
PWM3DCH				D	C<15:8>				239
PWM3PRL				P	R<7:0>				240
PWM3PRH				P	R<15:8>				240
PWM3OFL	OF<7.0>							241	
PWM3OFH				0	F<15:8>				241
PWM3TMRI				TN	/R<7:0>				242
PWM3TMRH				TM	IR<15:8>				242
PWM3CON	EN		OUT	POI	MODE	<1:0>			233
PWM3INTF		_	_	_	OFIF	PHIF	DCIF	PRIF	234
PWM3INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	234
							201		201

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PWM.

PIC16(L)F1574/5/8/9

FIGURE 27-2: VOLTAGE FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C, PIC16LF1574/5/8/9 ONLY

FIGURE 28-43: HFINTOSC Accuracy Over Temperature, VDD = 1.8V, LF Devices Only.

FIGURE 28-44: HFINTOSC Accuracy Over Temperature, $2.3V \le VDD \le 5.5V$.

FIGURE 28-45: Brown-Out Reset Voltage, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-46: Brown-Out Reset Hysteresis, BORV = 1, PIC16LF1574/5/8/9 Only.

FIGURE 28-47: Brown-Out Reset Voltage, BORV = 1, PIC16F1574/5/8/9 Only.

FIGURE 28-48: Brown-Out Reset Hysteresis, BORV = 1, PIC16F1574/5/8/9 Only.

PIC16(L)F1574/5/8/9

FIGURE 28-57: Comparator Hysteresis, Normal Power Mode (CxSP = 1, CxHYS = 1).

FIGURE 28-58: Comparator Hysteresis, Low-Power Mode (CxSP = 0, CxHYS = 1).

FIGURE 28-59: Comparator Response Time, Normal Power Mode, (CxSP = 1).

FIGURE 28-60: Comparator Response Time Over Temperature, Normal Power Mode, (CxSP = 1).

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2