

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.1 Register and Bit Naming Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode:

Example 1:

MOVLW ~(1<<G1MD1) ANDWF COG1CON0,F MOVLW 1<<G1MD2 | 1<<G1MD0 IORWF COG1CON0,F

Example 2:

BSF	COG1CON0,G1MD2
BCF	COG1CON0,G1MD1
BSF	COG1CON0,G1MD0

1.1.3 REGISTER AND BIT NAMING EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere to these naming conventions. Peripherals that have existed for many years and are present in almost every device are the exceptions. These exceptions were necessary to limit the adverse impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table in the registers section indicating the long name prefix for each peripheral instance. Peripherals that fall into the exception category will not have this table. These peripherals include, but are not limited to, the following:

- EUSART
- MSSP

TABLE 1-3: PIC16(L)F1578/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC1/AN5/C1IN1-/C2IN1-	RC1	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN5	AN		ADC Channel input.
	C1IN1-	AN		Comparator negative input.
	C2IN1-	AN	-	Comparator negative input.
RC2/AN6/C1IN2-/C2IN2-	RC2	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN6	AN		ADC Channel input.
	C1IN2-	AN		Comparator negative input.
	C2IN2-	AN		Comparator negative input.
RC3/AN7/C1IN3-/C2IN3-	RC3	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	AN7	AN		ADC Channel input.
	C1IN3-	AN	_	Comparator negative input.
	C2IN3-	AN		Comparator negative input.
RC4/ADCACT ⁽¹⁾	RC4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	ADCACT	TTL/ST	_	ADC Auto-conversion Trigger input.
RC5	RC5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
OUT ⁽²⁾	C1OUT	—	CMOS	Comparator output.
	C2OUT	—	CMOS	Comparator output.
	PWM10UT	—	CMOS	PWM1 output.
	PWM2OUT	—	CMOS	PWM2 output.
	PWM3OUT	_	CMOS	PWM3 output.
	PWM4OUT	_	CMOS	PWM4 output.
	CWG1A	_	CMOS	Complementary Output Generator Output A.
	CWG1B	_	CMOS	Complementary Output Generator Output B.
	TX/CK	—	CMOS	USART asynchronous TX data/synchronous clock output.
	DT ⁽³⁾	—	CMOS	USART synchronous data output.
VDD	Vdd	Power		Positive supply.
Vss	Vss	Power	_	Ground reference.

Open-Drain Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C Schmitt Trigger input with I²C = HV = High Voltage

XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-15:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

						•	,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
08Ch	TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	_	1111	1111
08Eh	TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	nted							_	_
090h	_	Unimplemen	nted							—	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	TMR2IE	TMR1IE	000000	000000
092h	PIE2	—	C2IE	C1IE	—		—	—	_	-00	-00
093h	PIE3	PWM4IE	PWM3IE	PWM2IE	PWM1IE		_	—	_	0000	0000
094h	_									-	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	-	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUI	N<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRC	CF<3:0>		—	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0q0 0q00	-ddd dddd
09Bh	ADRESL	ADC Result	ADC Result Register Low						xxxx xxxx	uuuu uuuu	
09Ch	ADRESH	ADC Result	Register Hig	h						xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>	•		GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>	•	—	_	ADPRE	F<1:0>	000000	000000
09Fh	ADCON2		TRIGS	EL<3:0>		_	_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1578/9 only.

 2:
 PIC16F1574/5/8/9 only.

 3:
 Unimplemented, read as '1'.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section
 5.3 "Clock Switching" for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.8 "Internal Oscillator Clock Switch Timing"** for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u		
SBOREN	BORFS	—	—	—	—	—	BORRDY		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
	<u>If BOREN <1:0> in Configuration Words ≠ 01</u> :
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	 1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

7.6 Register Definitions: Interrupt Control

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 GIE⁽¹⁾ PEIE⁽²⁾ IOCIF⁽³⁾ INTF TMR0IE INTE IOCIE TMR0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown '0' = Bit is cleared '1' = Bit is set GIE: Global Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit⁽²⁾ 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts TMR0IE: Timer0 Overflow Interrupt Enable bit bit 5 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt **INTE:** INT External Interrupt Enable bit bit 4 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change TMR0IF: Timer0 Overflow Interrupt Flag bit bit 2 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur IOCIF: Interrupt-on-Change Interrupt Flag bit⁽³⁾ bit 0 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

- enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
 - 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.
 - **3:** The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 27.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10		Awake	Active
TO	X	Sleep	Disabled
0.1	1	х	Active
UI	0	х	Disabled
00	х	х	Disabled

TABLE 9-1: WDT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- · Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- Device wakes up from Sleep
- Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See **Section 5.0 "Oscillator Module"** for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section 3.0 "Memory Organization"** for more information.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = EXTRC, INTOSC, EXTCLK	
Change INTOSC divider (IRCF bits)	Unaffected

PIC16(L)F1574/5/8/9

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

;;;;;;	<pre>; This write routine assumes the following: ; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, ; stored in little endian format ; 3. A valid starting address (the Least Significant bits = 00000) is loaded in ADDRH:ADDRL ; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)</pre>								
;		BCF BANKSEL	INTCON,GIE ; PMADRH ;	Disable ints so required sequences will execute properly Bank 3					
		MOVE	ADDRH.W	Load initial address					
		MOVWF	PMADRH ;						
		MOVF	ADDRL,W ;						
		MOVWF	PMADRL ;						
		MOVLW	LOW DATA_ADDR ;	Load initial data address					
		MOVWF	FSROL ;						
		MOVLW	HIGH DATA_ADDR ;	Load initial data address					
		MOVWF	FSROH ;						
		BCF	PMCON1,CFGS ;	Not configuration space					
		BSF	PMCON1,WREN ;	Enable writes					
		BSF	PMCON1,LWLO ;	Only Load Write Latches					
LC	OP								
		MOVIW	FSR0++ ;	Load first data byte into lower					
		MOVWF	PMDATL ;						
		MOVIW	FSR0++ ;	Load second data byte into upper					
		MOVWF	PMDATH ;						
		MOVF	PMADRL,W ;	Check if lower bits of address are '00000'					
		XORLW	0x1F ;	Check if we're on the last of 32 addresses					
		ANDLW	0x1F ;						
		BTFSC	STATUS, Z ;	Exit if last of 32 words,					
		GOTO	START_WRITE ;						
		MOVLW	55h ;	Start of required write sequence:					
		MOVWF	PMCON2 ;	Write 55h					
	ed See	MOVLW	0AAh ;						
	uir	MOVWF	PMCON2 ;	Write AAh					
	eqi	BSF	PMCON1,WR ;	Set WR bit to begin write					
	щω	NOP	;	NOP instructions are forced as processor					
			;	loads program memory write latches					
		NOP	'						
		INCE	DMADRI, F	Still loading latches Increment address					
		COTO	LOOP :	Write next latches					
		9010	LOOF /	WITCH HEAT TATCHES					
SI	ART V	RITE							
		BCF	PMCON1,LWLO ;	No more loading latches - Actually start Flash program					
			;	memory write					
	<u> </u>								
		MOVLW	55h ;	Start of required write sequence:					
		MOVWF	PMCON2 ;	Write 55h					
	g g	MOVLW	0AAh ;						
	uire Jen	MOVWF	PMCON2 ;	Write AAh					
	edi	BSF	PMCON1,WR ;	Set WR bit to begin write					
	жŵ	NOP	;	NOP instructions are forced as processor writes					
			;	all the program memory write latches simultaneously					
		NOP	;	to program memory.					
	L		;	After NOPs, the processor					
			;	stalls until the self-write process in complete					
			;	after write processor continues with 3rd instruction					
		BCF	PMCON1,WREN ;	Disable writes					
		BSF	INTCON,GIE ;	Enable interrupts					

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Reset	s
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

	PMDAT<13:8>								
bit 7					bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
			PMAD	R<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other					ie at all other Res	ets				
'1' = Bit is set		'0' = Bit is cleared								

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
(1)				PMADR<14:8>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchang	ed	x = Bit is unknow	n	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	ł						

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0				
—		—		—	—	_	PPSLOCKED				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 16.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 18.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

14.2 FVR Stabilization Period

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.

FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

PIC16(L)F1574/5/8/9

FIGURE 16-5: ANALOG INPUT MODEL

(Configuration Bi	ts		Poud Poto Formula				
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula				
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]				
0	0	1	8-bit/Asynchronous					
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]				
0	1	1	16-bit/Asynchronous					
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]				
1	1	х	16-bit/Synchronous	1				

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair.

TABLE 22-4:	SUMMARY OF REGISTERS ASSOCIATED WI	TH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	204		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	203		
SPBRGL	BRG<7:0>										
SPBRGH	BRG<15:8>										
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	202		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

	SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 20.000 MHz			Foso	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300		_	_	_	_		_		_	_	_	_		
1200	1221	1.73	255	1200	0.00	239	1202	0.16	207	1200	0.00	143		
2400	2404	0.16	129	2400	0.00	119	2404	0.16	103	2400	0.00	71		
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17		
10417	10417	0.00	29	10286	-1.26	27	10417	0.00	23	10165	-2.42	16		
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8		
57.6k	_	_	_	57.60k	0.00	7	—	—	_	57.60k	0.00	2		
115.2k	—	—	_	—	—	_	—	—	—	_	_	—		

TABLE 22-5:BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Foso	: = 3.686	4 MHz	Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51		
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12		
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—		
9600	9615	0.16	12	—		—	9600	0.00	5	—	—	—		
10417	10417	0.00	11	10417	0.00	5	—	—	—	—	_	—		
19.2k	—	—	—	—	—	—	19.20k	0.00	2	—	—	—		
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—		
115.2k	_	_	_	—	_	_	—	_	_	—	_	_		

	SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	—	_	—	—	_	—		—	—	_	—	—		
1200	—	_	—	—	_	—	—	—	—	—	—	—		
2400	—		—	—		—	—	—	—	—	_	_		
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71		
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65		
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35		
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11		
115.2k	113.64k	-1.36	10	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5		

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information.

PIC16(L)F1574/5/8/9

Fosc = 500 kHz, PIC16LF1574/5/8/9 Only.

FIGURE 28-14: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1574/5/8/9 Only.

Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-16: IDD Maximum, HFINTOSC Mode, PIC16LF1574/5/8/9 Only.

FIGURE 28-17: IDD Typical, HFINTOSC Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-18: IDD Maximum, HFINTOSC Mode, PIC16F1574/5/8/9 Only.

FIGURE 28-31: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16LF1574/5/8/9 Only.

FIGURE 28-32: Ipd, Comparator, Low-Power Mode (CxSP = 0), PIC16F1574/5/8/9 Only.

FIGURE 28-33: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16LF1574/5/8/9 Only.

FIGURE 28-35: VOH vs. IOH Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

FIGURE 28-34: Ipd, Comparator, Normal Power Mode (CxSP = 1), PIC16F1574/5/8/9 Only.

FIGURE 28-36: VoL vs. IoL Over Temperature, VDD = 5.5V, PIC16F1574/5/8/9 Only.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	14		
Pitch	е	1.27 BSC		
Overall Height	А	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	I I	0.25
Overall Width	Ш		6.00 BSC	
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	I	1.27
Footprint	L1	1.04 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	II.	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ -	×	<u>/xx</u>	<u>xxx</u>	Ex	amp	oles:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a)	Pl Ta In Si	IC16LF1578T - I/SO ape and Reel, dustrial temperature, OIC package
Device:	PIC16LF1574, PIC16LF1578,	PIC16F1574, PI PIC16F1578, PI	C16LF1575, PIC C16LF1579, PIC	C16F1575 C16F1579	b) c)	Pi In Pi Pi	IC16F1575 - I/P Idustrial temperature DIP package IC16LF1574-E/JQ
Tape and Reel Option:	Blank = Stand T = Tape	dard packaging (and Reel ⁽¹⁾	tube or tray)			E: U	xtended Temperature QFN Package
Temperature Range:	$I = -40^{\circ}$ E = -40^{\circ}	°C to +85°C °C to +125°C	(Industrial) (Extended)				
Package: ⁽²⁾	GZ = UQF JQ = UQF P = Plas SL = SOI SO = SOI SS = SSO ST = TSS	EN, 20-Lead (4x4 EN, 16-Lead (4x4 stic DIP C, 14-Lead C, 20-Lead DP, 20-Lead SOP, 14-Lead	4x0.5mm) 4x0.5mm)		No	te 1: 2:	 Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package
Pattern:	QTP, SQTP, Co (blank otherwis	ode or Special R e)	equirements				availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.